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Sound of sonoluminescence
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We consider an air bubble in water under conditions of single-bubble sonoluminescence~SBSL! and evalu-
ate the emitted sound field nonperturbatively for subsonic gas-liquid interface motion. Sound emission being
the dominant damping mechanism, we also implement the nonperturbative sound damping in the Rayleigh-
Plesset equation for the interface motion. We evaluate numerically the sound pulse emitted during bubble
collapse and compare the nonperturbative and perturbative results, showing that the usual perturbative descrip-
tion leads to an overestimate of the maximal surface velocity and maximal sound pressure. The radius vs time
relation for a full SBSL cycle remains deceptively unaffected.@S1063-651X~98!12403-0#

PACS number~s!: 47.35.1i, 43.28.1h, 43.35.1d, 47.10.1g
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I. INTRODUCTION

This extensive study of the sound produced in sing
bubble cavitation is prompted by the recent interest
sonoluminescence~SL!, i.e., the conversion of externally ap
plied sound in a liquid into light@1#. It has been generally
accepted that the SL light emission is intimately connecte
the dynamics of the gas-liquid interface, though the spec
mechanism producing the light flashes has not been uniq
identified. We present here a nonperturbative study of
sound radiated from the subsonically moving phase bou
ary between the gas bubble and the liquid in which it
immersed. In our approach we rely on the standard treatis
the subject@2#. Apart from the importance of sound emissio
as the primary damping mechanism under the extreme
ditions of sonoluminescence, the sound signal can be use
another diagnostic tool to study the bubble dynamics.
detailed accounts of related previous theoretical studie
the cavitation sound see Refs.@3,4#, including references to
earlier work. We proceed here in two distinct steps. To be
with, the motion of the gas-liquid phase boundary is assum
to be given and we determine the resulting sound field. S
ond, we consider the feedback effect of the radiated so
field onto the phase boundary dynamics, i.e., we describe
motion of the bubble self-consistently.

The ~multi!bubble cavitation has been studied intens
for some time because of important applications and in
esting underlying fluid dynamics@5–7#. The discovery of
well-controlled experimental conditions by Gaitan and Cru
@8# permitting the study of a single gas bubble over lo
periods of time, together with the ability to drive it external
by acoustic waves, has focused the experimental interes
the single-bubble sonoluminescence~SBSL! phenomenon.
The remarkable finding here is that light is produced in v
short pulses@9#: 106 photons of several eV energy are em
ted within 50 ps by apparently about 1010 atoms/molecules
from a gas bubble of submicrometer radius.

The standard theoretical tool in the study of the bub
surface dynamics is the Rayleigh-Plesset~RP! equation, rep-
resenting the motion of the gas-liquid interface by the tim
dependent~spherical! bubble radiusR(t). Several mecha-
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nisms that damp the collective motion of the bubble-liqu
system have been incorporated in modern approaches:
cosity of the liquid and sound damping@4#. The effects of the
‘‘rectified’’ mass diffusion@1,5# and heat conductivity~see,
e.g., Ref.@10#! also play an important role in establishing th
parameter regime for stationary SBSL, but will not be furth
discussed here. In the SBSL cycle the sound emission
duced during the violent bubble collapse turns out to be
most important energy-loss mechanism@1,11#. Less than half
of the energy in the bubble is dissipated by the viscous f
tion. Only a comparatively tiny fraction of the energy deli
ered to the bubble by the external sound wave is radiate
the form of visible light@1,11#.

We will use the linear acoustic approximation~see Sec.
II A !, which describes the subsonic propagation of den
perturbations in a fluid neglecting the effects of sound wa
dispersion and absorption@2#. This approximation does no
allow us to study situations involving shock wave formati
in the liquid. In Sec. II B we solve the sound wave equati
for the velocity potential exactly for any givenR(t). Our
derivation is formally exact provided the assumptions
nondissipative fluid dynamics are valid. Our expressions
count in full for retardation and allow an arbitrary incomin
sound field. The key result is the exact form of the press
amplitude radiated from the moving bubble surface into
surrounding liquid; see Eq.~28!. In order to compare with
earlier analytical and numerical work we also derive in S
II C the perturbative expansion of our general results in po
ers ofṘ/c, i.e., the bubble wall velocity divided by the liqui
sound velocity.

In Sec. III we describe a model of the bubble interior th
is motivated by the approximately homologous dynamics
served in numerical hydrodynamic simulations@12#: The gas
density distribution and velocity field have been found
show a simple scaling behavior in terms of the scaled rad
variablej[r /R(t) and withv(r ,t)'jṘ, respectively. These
numerical results recently have motivated the developm
of a semianalytic approach for the coupled bubble-liquid s
tem, based on a Lagrangian variational principle@13,14#, of
which a simpler variant will be used here. This allows us
4170 © 1998 The American Physical Society
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57 4171SOUND OF SONOLUMINESCENCE
assess the order of magnitude of the feedback effects o
bubble interior dynamics.

With this preparation we can proceed in Sec. IV to t
second step indicated above, i.e., the derivation of a s
consistent bubble equation of motion. There exists alread
variety of equations generalizing the Rayleigh-Plesset eq
tion ~see e.g.@5–7#! and more recent ones that consider t
case of the externally driven damped nonlinear bubble os
lations in the SBSL parameter regime@3,4#. In our self-
consistent approach~Sec. IV A! we make extensive use o
the results obtained in Sec. II. We incorporate the exte
sound field in Sec. IV B according to standard experimen
conditions realized to date. In Sec. IV C we derive a nonp
turbative equation~89!, which is formally valid to all orders
in Ṙ/c (,1), however, subject to the linear acoustic a
proximation scheme. We incorporate the bubble interior
ing the van der Waals equation of state and allow also fo
realistic equation of state~EOS! of the liquid. Our deriva-
tions are based on the Navier-Stokes equation and thus
the effects of the liquid and gas viscosities consistently i
account.

We illustrate our formal results in Sec. V by studyin
numerically the properties of an air bubble in water ext
nally driven by an ultrasound field with system parameters
the typical SBSL regime@1,11#. We show in detail there tha
the various~nonperturbative! corrections incorporated in th
bubble equation of motion generally result in sizable corr
tions of the maximal bubble surface velocity during the c
lapse. They tend to make the bubble collapse less vio
than seen in previous perturbative descriptions. In Sec.
we compute the outgoing compression wave emitted fr
the bubble surface into the surrounding liquid and consi
the validity of the acoustic approximation. We present fin
remarks and conclusions accompanied by a brief summar
our work in Sec. VI.

II. SOUND EMISSION FROM PHASE BOUNDARIES

We reexamine here the sound radiation originating from
moving phase boundary between two nonviscous flu
separated by an idealized wall of vanishing thickness. Re
ences to earlier work on this subject are surveyed in R
@2,6,7#. Related issues were studied recently in Refs.@3,4#. In
distinction to these approaches, we derive exact express
for the sound field emitted from a spherical boundary und
going arbitrary motion. We begin in the next subsection
recapitulating some aspects of nonviscous hydrodynam
that lead to the~acoustic! approximation scheme used here
describing the sound generation and propagation.

A. Acoustic approximation

The linear acoustic approximation is based on the
sumption that the sound field causes only small perturbat
of the ambient state of the fluid characterized by a vanish
velocity field and constant density and pressure@2#. Thus we
shall not consider here nonlinear phenomena, such as
dispersion and absorption of sound waves in the medium
in particular the formation of supersonic shock waves. W
shall see quantitatively in Sec. V that this scheme is fa
well satisfied, though the amplitude of the generated so
field typically reaches up to 104 atm near to a SBSL bubble
he
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The basic equations of nonviscous hydrodynamics are
following.

~i! The continuity equation for the fluid densityr, which
ensures the conservation of mass, is

] tr1¹W •~rvW !50, ~1!

wherevW denotes the local fluid velocity.
~ii ! The Euler equation, arising from Newton’s equatio

of motion for a small fluid cell, is

rDtvW 52¹W P, ~2!

where P denotes the local pressure in the nonviscous fl
and the comoving derivative is defined byDt[] t1vW •¹W .
Later we will consider the Navier-Stokes generalization
viscous flow; see Eq.~53!.

~iii ! In the absence of entropy production the set of eq
tions is closed by the EOS relating the pressure to the d
sity. For example, the ideal gas EOS is

P@r#5Krg, g[CP /CV , ~3!

where the adiabatic indexg denotes the ratio of the specifi
heat at constant pressure and volume, respectively.

Had we allowed the sound waves to disturb the medi
and generate entropy, we would require an EOS with t
variables, e.g., relating the pressure to the mass and en
densities. In this case we would have to introduce additi
ally the energy conservation in differential form, in order
close the set of equations.

In the following we study small-amplitude, acoustic pe
turbations of an ambient state of the fluid~liquid and gas!
characterized by the ambient solutions to Eqs.~1!–~3!,
P0 ,vW 0 ,r0. In order to obtain equations governing the pertu
bationsP* ,vW * ,r* , we set

P5P01P* , vW 5vW 01vW * , r5r01r* . ~4!

Inserting these expressions into Eqs.~1!–~3!, a coupled set of
equations results, which relates various powers of the per
bations. The description of perturbations can be further s
plified by assuming a particularly simple ambient state

P0~xW ,t !5const, vW 0~xW ,t !50W , r0~xW ,t !5const, ~5!

i.e., a homogeneous state independent of time~quiescent
state!. Then the equations linearized in the perturbations
come

] tr* 1r0¹W •vW * 50, ~6!

r0] tvW * 52¹W P* , ~7!

P* 5gKr0
g21r* 5c2r* , c2[

]P

]r
, ~8!

where we made use of a Taylor expansion in order to ob
Eq. ~8! and introduced the~constant! sound velocityc for the
ambient fluid state. Combining Eqs.~6!–~8!, we obtain the
well-known wave equations
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] t
2P* 2c2DP* 50, ] t

2r* 2c2Dr* 50. ~9!

Next we introduce the velocity potentialf. Consider the
curl of Eq. ~7!:

r0] t¹W 3vW * 52¹W 3¹P* 50W , ~10!

i.e., ¹W 3vW * (xW ,t)5CW (xW ). Thus, if the vorticity of the velocity
field perturbationvW * vanishes initially, then it remains zer
always. In this case we can write

vW * [¹W f, P* [2r0] tf, ~11!

where the relation between the velocity potential and
pressure perturbation is chosen such that the linearized E
equation~7! is automatically satisfied. Inserting the EOS~8!
into the linearized continuity equation~6! and using Eq.~11!,
one obtains the wave equation for the velocity potential:

] t
2f2c2Df50. ~12!

For simplicity, we suppress from now on the asterisk sup
script introduced in Eq.~4!.

B. Outgoing spherical wave dynamics

Assuming spherical symmetry and using spherical coo
nates, the velocity potential is seen to satisfy the usual sc
spherical wave equation

05r H ] t
2f2

c2

r
] r

2~rf!J 5] t
2~rf!2c2] r

2~rf!. ~13!

The generic solutions~regular at infinity! are outgoing and
incoming spherical waves

fout5r 21f ~ t2r /c!, f in5r 21g~ t1r /c!. ~14!

For the spherically symmetric bubble wall located at the
sition r 5R(t) the boundary condition is

v~R,t !5] rf~r ,t !ur 5R~ t !5Ṙ~ t !, ~15!

where we introduced the notationẊ[dX/dt. In general, the
solution of the wave equation~14! will be composed of a
linear superposition of incoming and outgoing spheri
waves. We shall allow for the possibility of an incomin
acoustical wavef in , e.g., as part of the external drivin
sound field, and rewrite Eq.~15! in more detail:

] rfoutur 5R52
1

R2
f ~ t2R/c!2

1

cR
f 8~ t2R/c!

5Ṙ2] rf inur 5R[Ṙ, ~16!

where fout has been substituted by an outgoing spher
wave; cf. Eqs.~14!; henceforth we use the abbreviatio
f 8(x)[d f /dx. The external fieldf in is kept arbitrary in the
derivations to follow, but will be incorporated according to
physically relevant example in Sec. IV B.

In principle, there will be also a sound field generated
the moving phase boundary that will travel into the interi
to be reflected at the center of the bubble (r 50), and then
e
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return. Its description, i.e., pertaining to the bubble interi
requires a suitable modification of the present approach;
Sec. III.

With Ṙ(t) given by other dynamics, our objective now
to determine implicitly the outgoing velocity potentialfout .
For this purpose we recast Eq.~16! into the form of an ordi-
nary linear first-order differential equation with known tim
dependent coefficients:

2
1

R2
F2

1

cR

1

12Ṙ/c
Ḟ5Ṙ, ~17!

where we used of the following substitutions and simple
lations:

t2~ t ![t2R~ t !/c⇒ ṫ2512Ṙ~ t !/c, ~18!

f 8~ t2R/c!5
d f

dt2

dt2

dt

1

ṫ2

5
ḟ ~ t2!

12Ṙ/c
, ~19!

F~ t ![ f „t2~ t !…⇒Ḟ~ t !5 ḟ „t2~ t !…. ~20!

In Eq. ~17! we note the retardation factor originating in E
~19!. The general solution of Eq.~17! is elementary:

F~ t !5F0

R~ t !

R~ t0!
expS 2E

t0

t

dt8
c

R~ t8!
D 2R~ t !E

t0

t

dt9

3@c2Ṙ~ t9!#Ṙ~ t9!expS 2E
t9

t

dt8
c

R~ t8!
D , ~21!

whereF0[F(t0) denotes the integration constant. It is fixe
by the requirement that no outgoing wave should be exc
before the bubble wall is set into motion att0. Therefore,
with Ṙ(t,t0)[0, we find F050. The resulting constrain
t.t0 is most conveniently implemented by a step functi
factor u(t2t0).

Using Eqs.~14! and~20!, we can recover from the abov
solution the outgoing velocity potential. To do this we w
need the inverse functiont̃ (t2)[t of t2(t) @Eq. ~18!#. Note
that t̃ is a single-valued function if and only ift2(t)5t
2R(t)/c is either strictly increasing or strictly decreasin
with time. For subsonic bubble wall motiont2(t) is strictly
increasing, since 12Ṙ/c.0, and t̃ is strictly increasing in
this case. This allows us to perform variable substitution
will and we obtain

fout~r ,t !5
1

r
F„ t̃ ~ t2r /c!…

52u~s2t0!
R~s!

r E
t0

s

dt9

3@c2Ṙ~ t9!#Ṙ~ t9!expS 2E
t9

s

dt8
c

R~ t8!
D ,

~22!

s[ t̃ ~ t2r /c!5t2
r 2R~s!

c
. ~23!
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The retardation effect seen here can be evaluated more
plicitly. For example,

t̃ ~ t2r /c!'t2
r 2R~ t2r /c!

c
, r @R~ t ! ~24!

t̃ ~ t2r /c!'t2
r 2R~ t !

c
, r *R~ t !. ~25!

In order to calculate the velocity and pressure fields,
require the derivative oft̃ :

t̃ „t2R~ t !/c…[t ⇒ t̃ 8~ t2!5
1

12Ṙ„ t̃ ~ t2!…/c
. ~26!

Then, differentiating Eq.~22!, we obtain (s.t0)

v~r ,t !5] r@fout~r ,t !1f in~r ,t !#

5H RṘ
r

1S 1

R
2

1

r DF

r J
t̃ ~ t2r /c!

1] rf in~r ,t !, ~27!

P~r ,t !52rL] t@fout~r ,t !1f in~r ,t !#

5
crL

r H RṘ1
F

RJ
t̃ ~ t2r /c!

2rL] tf in~r ,t !, ~28!

where all functions within the curly brackets are to be eva
ated at the indicated time argumentt̃ (t2r /c)5s; hence-
forth rL denotes the ambient density of the liquid. We rec
thatP is the pressure perturbation due to the generated so
field, to be added to the ambient pressure.

C. Series expansion for the sound field

The results obtained for the velocity potential and the
locity and pressure fields@Eqs. ~21!–~28! in Sec. II B#, in-
volve an integration over the history of the bubble wall m
tion. Thus the corresponding nonlinear differential equat
describing it self-consistently~Sec. IV! could be expected to
become nonlocal in time~see, however, Sec. IV C!. In any
case, for sufficiently slow motion a local approximation c
be justified~see Refs.@4–7# and earlier references therein!;
this approach leads to a popular generalization of the
equation. Therefore, our next objective is a systematic
pansion in powers ofṘ/c of our general expressions, in pa
ticular of the velocity potential~22!.

Let us consider an integral of the form@in our casej

5c/R,h}(12Ṙ/c)Ṙ]

I ~s![E
t0

s

dt9h~ t9!expH 2E
t9

s

dt8 j ~ t8!J , ~29!

with j .0 and s>t0; cf. Eq. ~21!. For a sufficiently large
integrand in the exponential the integration overt9 will be
effectively limited to a small range next to the upper limits.
This suggests the expansion
ex-

e

-

ll
nd

-

-
n

P
x-

I ~s!5E
t0

s

dt9h~ t9!expH 2E
t9

s

dt8@ j ~ t8!2 j ~s!#J
3exp$ j ~s!~ t92s!%

5 (
n50

`
1

n!
K ~n!~s!

dn

d jn
E

t0

s

dt9exp$ j ~s!~ t92s!%

5 (
n50

`
1

n!
K ~n!~s!

dn

d jn
12exp$ j ~s!~ t02s!%

j ~s!
, ~30!

where

K ~n!~s![
dn

d t̂n
h~ t̂ !expH 2E

t̂

s

dt8@ j ~ t8!2 j ~s!#J U
t̂5s

.

~31!

We remark that the exponentially small correction term~for
s@t0) on the right-hand side~rhs! of Eq. ~30! can be attrib-
uted to transient contributions to the integral or rather to
function F @Eq. ~21!#, which are due to the switching on o
the bubble wall motion considered in Sec. II B. Since we w
be mainly interested in the nonlinear oscillatory motion
the bubble wall when all transients have died out, we c
neglect this term for sufficiently late times. Thus we obta

I ~s!5 (
n50

`

~21!nK ~n!~s! j 2n21~s!, ~32!

which presents the starting point of our approximate eval
tion of the velocity potential.

Employing Eqs.~21! and ~22! from Sec. II B together
with Eqs.~29! and ~32! above, we obtain

fout~r ,t !52
R2~s!

r (
n50

` S 2
R~s!

c D n dn

d t̂n
S 12

Ṙ~ t̂ !

c
D Ṙ~ t̂ !

3expH ~s2 t̂ !
c

R~s!
1E

s

t̂
dt

c

R~ t !J U
t̂5s

52
R2

r
ṘH 122

Ṙ

c S 11
1

2

RR̈
ṘṘD

12S Ṙ

c
D 2S 112

RR̈
ṘṘ

1
RR̈

Ṙ2
1

1

2

R2R̂
Ṙ2ṘD

1O„~Ṙ/c!3
…J

s

, ~33!

where as befores5 t̃ (t2r /c); see Eq.~22!. The expansion
has to be carried out up to ordern54 in order to acquire in
the Ṙ/c expansion all second-order terms. Our result redu
to Eq. ~18! of Ref. @4# at theO(Ṙ/c) obtained there, pro-
vided we replace~i!R(t)→R(t), i.e., we ignore effects of an
incoming sound field@cf. Eq. ~16!#, and ~ii ! t̃ (t2r /c)→t
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2@r2R(t)#/c. The latter approximation amounts to neglecti
already someO(Ṙ/c) corrections in Eq.~33! due to retarda-
tion effects.

To conclude this subsection, we calculate the velocity a
pressure fields generated by a driven oscillating bubble w
i.e., the sound emitted, by combining Eqs.~22!, ~27!, and
~28!, respectively, and Eq.~33!:

v~r ,t !5] rf in~r ,t !1
R2Ṙ
r 2

12
Ṙ

c

RṘ
r S 12

R

r D H 11
1

2

RR̈
ṘṘ

2
Ṙ

c S 112
RR̈
ṘṘ

1
RR̈

Ṙ2
1

1

2

R2R̂
Ṙ2ṘD

1O„~Ṙ/c!2
…J

t̃ ~ t2r /c!

, ~34!

which illustrates nicely that our expansion reproduces
incompressible fluid (c→`) limit; furthermore,

P~r ,t !52rL] tf in~r ,t !1
2rL

r
RṘṘH 11

1

2

RR̈
ṘṘ

2
Ṙ

c S 112
RR̈
ṘṘ

1
RR̈

Ṙ2
1

1

2

R2R̂
Ṙ2ṘD

1O„~Ṙ/c!2
…J

t̃ ~ t2r /c!

, ~35!

where the inverse of the retarded time function has to
inserted everywhere as indicated before.

III. HOMOLOGOUS BUBBLE INTERIOR DYNAMICS

In Sec. IV we want to derive the equation of motion of t
phase boundary~bubble surface! self-consistently. For this
purpose we need to understand the dynamics of the inte
of the bubble. In distinction to Sec. II, presently we have
take into account that the density, pressure, and velo
fields inside the bubble may change by several orders
magnitude during different phases of the~periodic! bubble
motion. Therefore, a linearization of the hydrodynamic eq
tions of motion around a homogeneous and time-indepen
ambient state, as performed in Sec. II A, is not applica
here.

In the hydrodynamic studies of the interior motion t
emphasis has been on the understanding of the develop
of the extreme conditions inside the bubble@15,16#. Chu
noted that for an important part of the SBSL cycle the bub
motion is~nearly! homologous, i.e., the shape of the dens
distribution and the velocity field of the gas scale in an a
propriate way with the radiusR and surface velocityṘ @12#.
The numerical simulations in the SBSL parameter regi
indicate a homologous contraction~and its stability! until the
onset of shock wave formation and independently of the
tails of the EOS used. This stability of the homologous m
tion may be related to the fact that only for the homologo
motion there is no energy loss due to viscosity inside
bubble@see Eq.~60! and below#.
d
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We solve the continuity and Euler equations~1! and~2! of
Sec. II A, respectively, by approximating the density and v
locity fields with suitable scaling functions. We neglect d
sipative effects in the bubble, such as viscosity, heat cond
tion, and radiation transfer especially. Presently, we
interested in a semiquantitative analysis of the bubble in
rior. This seems sufficient for our later derivation of th
overall bubble dynamics: The motion is largely determin
by the dynamics of the fluid since only a minor fraction
the relevant total energy resides in the interior at any tim
For a detailed understanding of the microscopic proces
leading to sonoluminescence inside the bubble, however
dissipative effects will be essential ingredients.

It turns out~see Refs.@13,14#! that for a time-independen
shape of a properly scaling density distribution the veloc
potential is

f~r ,t ![
1

2

Ṙ

R
r 2, r<R, ~36!

in terms of the bubble radiusR(t), which yields

v5] rf5
Ṙ

R
r , ] tf5

1

2
F R̈

R
2S Ṙ

R
D 2G r 2, ~37!

i.e., a linear radial velocity profile. The continuity equatio
~1! takes the form

05] tr1
1

r 2
] r~r 2rv !5S %̇13

Ṙ

R
% D d̃1%] t d̃ uj, ~38!

where we introduced the homologous ansatz

r~r ,t ![%~ t ! d̃~j,t !, ~39!

with j[r /R(t) denoting the scaling variable. Here we fin
indeed that the velocity potential~36! is consistent with a
time-independent density profile function, i.e.,

d̃~j,t !5d~j!, ~40!

and the overall density factor of Eq.~39!, normalized toN
particles inside the bubble,

%~ t !5
N

4pR3~ t !E
0

1

dj j2d~j!

. ~41!

We choosed(1)[1 in the following, i.e.,r(R,t)5%(t). We
refer the reader to Refs.@13,14# for the variational improve-
ment of the strictly homologous dynamics~see@12# and ref-
erences therein! that we will pursue here, with a time
independent yet scaling density profile function.

In order to determine the scaling functiond(j), we con-
sider the integral of the Euler equation@cf. Eq.~2!# which for
our radially symmetric case yields

] tfuR
r 1

1

2
~] rf!2uR

r 52E
R

r

dr
1

r
] r P. ~42!

In the absence of entropyS production the integral on the rh
is the enthalpy:
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E
r

R

dr
1

r
] r P5E

r

RdP

r U
S

5h~R!2h~r !, h5E1
P

r
,

~43!

whereE5E/N is the specific energy per particle.
During the highest compression particle densities reac

in the bubble interior are similar to those in the liquid ou
side. We thus use here for the gas an adiabatic EOS@cf. Eq.
~3!# with van der Waals hard-core corrections

P~r!5P0S r

r0
D gS ra2r0

ra2r D g

[ P̃0S r/r0

12r/ra
D g

. ~44!

Herer0 (!ra) is the density at which the bubble interior
at the ambient pressureP0 and ra

21[(4p/3)a3/N in terms
of the van der Waals excluded volume. The adiabatic in
g for ideal monatomic~diatomic! gases is 5/3~7/5!. Related
EOSs have been applied to calculate the gas pressure b
@4,13,15#.

Performing the integral in Eq.~42! using Eq.~44! and
employing the scaling form for the velocity potential~36!,
we obtain@j[r /R(t)#

1

2
RR̈~j221!52

P̃0

r0
S r/r0

12r/ra
D g21S 1

12r/ra
1

1

g21D U
R

r

~45!

52
P̃0

r0
S r

r0
D g21S g

g21
1O~r/ra! D UuR

r

~46!

52
P̃0

ra
S ra

r0
D g 1

~12r/ra!g
@11O~12r/ra!#uR

r ,

~47!

where Eqs.~46! and ~47!, respectively, represent the low
and high-density limits of the rhs of Eq.~45!. Obviously, the
van der Waals correction introduces an additional scale
makes it difficult to find a universal density shape functio
Therefore, we consider the low- and high-density case
turn.

Low density. Inserting Eqs.~39!–~41! into Eq. ~46!, we
obtain

g21

2g

r0RR̈

P̃0
S r0

%~ t ! D
g21

5 ql 5
dg21~j!21

12j2
. ~48!

Since the left-hand side~lhs! here only depends ont and the
rhs only onj, we have introduced a constant parameterql
characterizing the time-independent density profile. Solv
the rhs, we find

dl~j!5@11ql~12j2!#1/~g21!. ~49!

We note that the lhs of Eq.~48! determines the value of th
parameterql and thus we can verify if indeed it is tim
independent. From this we conclude that this low-dens
(r!ra) functional form of the density profile function i
approximately valid for inertial motion withR̈'0 or, more
generally, when the bubble wall accelerates~decelerates!
d

x

ore

at
.
in

g

y

proportionally to the internal pressure acting on it,P(R,t)
' P̃0„%(t)/r0…

g, that is, whenever the ratio$%RR̈%(t)/
P(R,t) is approximately constant.

High density. In this limit, inserting Eqs.~39!–~41! into
Eq. ~47!, we obtain

1

2gS r0

ra
D graRR̈

P̃0

@12%~ t !/ra#g11

%~ t !/ra
5qh5

d~j!21

12j2
,

~50!

where again the lhs is only a function of time, while the r
is only a function ofj, and thus we can introduce the co
stant qh . In deriving Eq. ~50! we employed an additiona
expansion ford(j)'1 on the rhs, which is consistent wit
the high-density case (r'ra) under consideration. Solving
the rhs for the density profile function, we obtain

dh~j!511qh~12j2!, ~51!

while the lhs determines the value of the parameterqh , as
before. The limit of validity of this result is controlled by th
requirement that the expression on the lhs remains time
dependent. Note that the high- and low-density profiles ag
with each other forg52; however,g53/2 and 5/2 for mon-
atomic and diatomic gases, respectively.

We remark that the numerical values ofql and qh , in
general, vary depending on the dynamical regime and alw
q>21. It is important to realize that Eqs.~48! and ~50!
present implicit equations forql and qh , respectively. The
reason for this is that%(t), because of the normalization i
Eq. ~41!, depends on the integrated density profile and th
on the respectiveq by Eqs.~49! and ~51!. In practice, these
‘‘constants’’ will be treated as adiabatically changing para
eters to be computed self-consistently from the equati
derived here.

We observe that as the bubble goes through the c
determined by the driving pressure, the shape of the ma
distribution inside the bubble changes, controlled byq,
which remains nearly constant during much of the cycle a
changes rapidly in sign near the bubble collapse or boun
wheneverR̈50, where the lhs of Eq.~45!, ~48!, or ~50!
vanishes, andq50, ensuring in this transition instant
~nearly! homogeneous density distribution. For negative v
ues ofq the highest density is found at the surface, cor
sponding to a collapsing phase; similarly, positive values
q with the highest density at the center correspond to
expanding phase of the bubble motion. We found that th
is an approximate fixed pointr /R[j* in the motion, where
the average density corresponding to a homogeneous bu
is maintained during the entire cycle:

r* [r~j* R,t !.N/~4p/3!R~ t !3, j* '0.78. ~52!

This will turn out to be a very useful property, which w
shall exploit in deriving specific numerical results in Se
V B, where we compare the bubble dynamics for a homo
neous and a homologous interior, respectively.
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IV. DERIVATION OF THE BUBBLE EQUATION
OF MOTION

Having studied the effects of a given bubble wall moti
on the exterior liquid and the bubble interior in Secs. II a
III, respectively, we now turn to the question how this m
tion can be determined self-consistently. That is, assum
an external driving sound fieldf in , we want to derive an
equation of motion for the bubble radiusR as a function of
time. We also take the bubble interior into account. Its d
namics may have little influence on most of the cycle
stable bubble oscillations. However, in order to improve
understanding of the final stage of the violent collap
@13,14#, it has to be considered. In addition to the sou
emission from the moving phase boundary, which constitu
a major energy-loss mechanism, the effect of viscous da
ing will also be incorporated here, which is of a similar ord
of magnitude to acoustic damping. Despite the fact that
considerations so far were based on the assumption of
viscous fluid dynamics, i.e., approximately free wave pro
gation in particular, we can include dissipative and drivi
forces in the equation of motion forR(t) by deriving it from
the Navier-Stokes~momentum balance! equation. Thus only
the back reaction of viscosity~and other dissipative transpo
effects! on the wave propagation and velocity potentialf is
neglected here.

A. The „generalized… Rayleigh-Plesset equation

We begin with the Navier-Stokes equation generaliz
the Euler equation@see Eq.~2!# to the case of viscous fluid
@2#. For our spherically symmetric situation this equation c
be written in the form

] r H ] tf1
1

2
~] rf!2J 52

1

r
] r P1

h

r
] r S 1

r
] r

2~rf! D , ~53!

wheref(r ,t) denotes the appropriate velocity potential, i
for the interior or exterior region, andh[ 4

3 hs1hb is the
relevant combination of shear and bulk viscosities of
fluid entering here. Similarly, the pressureP has to be speci-
fied differently according to whether the interior or exteri
of the bubble is considered.

Due to the phase change at the bubble surface, there a
a nontrivial boundary condition relating the normal comp
nents of the stress tensorS inside~gas! and outside~liquid!:

nW •SG•nW 5nW •SL•nW 2
2s

R
, ~54!

where the term proportionals denotes the ‘‘pressure’’ con
tribution due to the~liquid! surface tension for the liquid-ga
interface and the viscous stress tensor has to be evaluate
the respective fluid under consideration@2#:

nW •S•nW [H 2P1h] rv2
h̄

r
vJ

r 5R

, ~55!

where h̄[ 4
3 hs22hb , h was defined after Eq.~53!, and

v(r ,t)[] rf(r ,t), as usual. Then, employing the bounda
condition ~15! and the velocity potential~36! for the gas
phase, we obtain, instead of Eq.~54!, more explicitly
g

-
f
e
e

s
p-
r
r
n-
-

g

n

.

e

ses
-

for

2PG~R!1~hG2h̄G!
Ṙ

R
52PL~R!1hL] rvur 5R

2h̄L

Ṙ

R
2

2s

R
. ~56!

Using Eq.~26! and the velocity field~34!, we calculate] rvuR
for the outer liquid:

] rv~r ,t !ur 5R522
Ṙ

R
2Ṙ21H F22

Ṙ

R
1

Ṙ

c
] t

1S Ṙ

c
D 2

] tG] rf in~r ,t !J
r 5R

22
Ṙ
R
S Ṙ

c
D 2S 112

RR̈
ṘṘ

1
RR̈

Ṙ2
1

1

2

R2R̂
Ṙ2ṘD

1O„~Ṙ/c!3
…, ~57!

where the first term on the rhs corresponds to the inco
pressible fluid limit (c→`) in the absence of an externa
driving sound field.

Several remarks are in order here.
~i! The bubble gas pressure at the surfacePG(R)

[PG„rG(R,t)… is determined by the van der Waals EO
~44! together withrG(R,t)5%G(t), according to Eqs.~39!
and ~41! for the homologous density function. The liqui
vapor pressure inside the bubble is not considered at pre

~ii ! We observe thathG2h̄G53hbG , in terms of the bulk
viscosity of the gas, which is generally very small compar
to liquid viscosities. The shear viscosity does not contrib
here at all; cf. also the remark after Eq.~60! below. For
completeness, we allow for viscous damping in the gas
side the bubble, even though it might at best become imp
tant during the rapid collapse and high compression pha

~iii ! We recall that by definition of the inverse of th
retarded time function~26! we have t̃ @ t2R(t)/c#[t; there-
fore, the rhs of Eq.~57! has to be evaluated at the timet.

In the following the boundary condition~56! together
with Eq. ~57! will be employed to eliminatePL(R) in terms
of the other quantities, which by now are explicitly calc
lated functions ofR, Ṙ, R̈, etc. In order to proceed, we con
vert the Navier-Stokes equation~53! together with the
boundary condition~56! into an ordinary differential equa
tion for R(t). This can be achieved by integrating over t
radial coordinate, i.e. , the approach advocated earlier in R
@3#, for example. Symbolically, in obvious corresponden
with the terms on the left- and right-hand sides of Eq.~53!,
we obtain

H E
0

R

1E
R

`J dr D5H E
0

R

1E
R

`J dr P1H E
0

R

1E
R

`J dr V,

~58!

where we split the integrations atr 5R because of the dif-
ferent phases inside and outside. Making use of the resul
Secs. II and III, we proceed to evaluate each term of
generalized Bernoulli equation~58! in turn.
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Using the velocity potential~36! for the bubble interior,
we obtain

E
0

R

dr D[E
0

R

dr] r H ] tf1
1

2
~] rf!2J 5

1

2
RR̈, ~59!

E
0

R

dr V[E
0

R

dr
hG

r
] r S 1

r
] r

2~rf! D50. ~60!

We observe that the homologous scaling solution for
bubble interiorf}r 2 does not give a contribution to th
integrated viscous force term here. This remarkable re
suggests that viscous forces drive the bubble motion to
homologous limit, which we discussed in Sec. III and is
this respect quite unique@12–14#. Furthermore, employing
the van der Waals EOS~44!, we calculated the enthalp
integral for the gas inside the bubble before@cf. Eqs. ~43!
and ~45!#:

E
0

R

drP [2E
0

R

dr
1

r
] r PG52PG~rG!

g2rG /ra

~g21!rG
U

0

R

[hG@PG#, ~61!

where we rewrote our previous result of Eq.~45! in terms of
the van der Waals expression for the pressure and deno
hG the gas enthalpy.

Next, we turn to the evaluation of the corresponding in
grals for the exterior region. The first integral follows imm
diately from our derivations in Sec. II:

E
R

`

dr D [E
R

`

dr ] r H ] tf1
1

2
~] rf!2J 5

1

rL
P~R,t !2

1

2
Ṙ2,

~62!

where P(r ,t) denotes the pressure field calculated in E
~28! and evaluated approximately in Eq.~35!; henceforth we
denote byrL the ambient density of the liquid. The secon
term on the rhs of Eq.~62! simply follows from the boundary
condition ~15! and the assumptionf→0 ~sufficiently fast!
for r→`.

In order to calculate the enthalpy integral for the liqu
we employ an EOS that gives a realistic description for ma
liquids @5#:

PL~r!5~P01P1!S r

rL
D n

2P1 ,
]PL

]r
5c2~r!, ~63!

whereP0 denotes the ambient pressure andn,P1 are param-
eters depending on the liquid~e.g., for watern57, P153
kbar!. Then it is straightforward to obtain

E
R

`

dr P[2E
R

`

dr
1

r
] r PL

5
n

n21

P01P1

rL
H S PL~R!1P1

P01P1
D ~n21!/n

21J
[hL@PL#, ~64!

using P(r→`)5P0, i.e., the ambient pressure, and whe
hL denotes the liquid enthalpy. As mentioned before,
e

lt
e

by

-

.

,
y

e

liquid pressure on the bubble surfacePL(R) will be elimi-
nated via the pressure boundary condition~56!.

The last~viscous! term from Eq.~58! can be evaluated
employing the approximationr'rL :

E
R

`

dr V[E
R

`

dr
hL

r
] r S 1

r
] r

2~rf! D52
hL

rL

1

r
] r

2~rf!ur 5R

52
hL

rL
H 2

Ṙ

R
1] rvur 5RJ , ~65!

i.e., neglecting a cross term between the viscosity and c
pressibility of the liquid, which will be justified by the nu
merical results presented in Sec. V C. It is worthwhile
recall that in Eqs.~59!–~65! all the functionsR, Ṙ, R̈, etc.,
which appear on the rhs, are to be evaluated simply at
time t.

Collecting the essential results from Eqs.~59!–~65!, we
obtain the equation of motion for the bubble radiusR(t), i.e.,
*0

`dr D5*0
`dr(P`V), in the form

1

2
RR̈2

1

2
Ṙ21

1

rL
P~R,t !5hG@PG#1hL@PL#

2
hL

rL
H 2

Ṙ

R
1] rvur 5RJ . ~66!

This equation is valid for any subsonic bubble wall veloc
and is nonperturbative inṘ/c. In fact, inserting here our
general results of Sec. II B for the sound field generated
the bubble, in particularv(r ,t) andP(r ,t) calculated in Eqs.
~27! and~28!, respectively, we obtain an important genera
zation of the Rayleigh-Plesset equation.

In order to illustrate the contents of Eq.~66!, we proceed
with a perturbative evaluation of terms involving the gen
ated sound field making use of our results of Sec. II C. Us
in Eq. ~66! the expansions inṘ/c, especially Eqs.~35! and
~57!, we obtain the perturbative bubble equation of motio

1

2
RR̈2

1

2
Ṙ21

1

rL
Pa12ṘṘS 12

Ṙ

c
D 1RR̈S 124

Ṙ

c
D

2
2

c
RṘR̈2

1

c
R2R̂

5hG@PG#1hL@PL#

22
hL

rL
H F 1

R
2

1

2c
] tGva~r ,t !J

r 5R

1O„~Ṙ/c!2
….

~67!

We observe that forṘ[0, i.e., when the bubble wall veloc
ity is identical to the incoming acoustical velocity field atr
5R(t), all terms involving 1/c corrections vanish. However
on the rhs the viscous damping term survives, which
volves only the incoming sound field. This is to be expec
since no outgoing sound wave is generated, in agreem
with the nonperturbative results for the velocity and press
fields, v5va[] rf in andP5Pa[2rL] tf in in this case.
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We arrive at a more useful form of the bubble equation

motion by eliminatingR̂ from Eq.~67!. This can be achieved
at the same order inṘ/c by using the equation at leadin

order ~i.e., for c→`) to calculateR̈ and thenR̂:

RR̂5
2

3H d

dt
@rhsu`#2

9

2
ṘR̈2

1

rL
Ṗa12R̈va13Ṙv̇a1Rv̈aJ ,

~68!

where the term@rhsu`# denotes the rhs of Eq.~67! in the
limit c→` and Pa[Pa(R,t), va[va(R,t), Ṗa

[(d/dt)Pa(R,t), v̇a[(d/dt)va(R,t), etc., from now on.
Reinserting this expression into Eq.~67!, we finally obtain
the equation

RR̈F S 11
1

2D S 122
Ṙ

c
D 1

2

3

va

c G1
3

2
Ṙ2S 12

4

3

Ṙ2va

c
D

22Ṙva2Rv̇aS 12~111!
Ṙ

c
D 1

1

3

R2

c
v̈a

2F11S 12
1

3DR

c

d

dt U
c→`

GFhG@PG#1hL@PL#

22
hL

rL
H S 1

R
2

1

2c
] tD va~r ,t !J

r 5R

2
1

rL
PaG

1O„~Ṙ/c!2
…50, ~69!

where we separated out the underlined terms in order to
cilitate the discussion of our result; the term proportion
d/dtuc→` is to be read as ‘‘take this limit of the following
expression before evaluating the derivative.’’ Equation~69!
generalizes previously considered variants of the Rayle
Plesset equation. In comparison to earlier related work,
ticularly Refs.@3,4,13#, we draw attention to the following.

~i! The dynamics of the gas in the interior of the bubble
well as of the exterior liquid is fully incorporated in ou
derivation. It is based on the Navier-Stokes equation~53!
supplemented by the boundary condition~56! relating the
normal components of the stress tensor at the bubble sur
Neglecting the bubble interior amounts to setting the und
lined numerical constants in Eq.~69! to zero, which is
equivalent to neglectingRR̈/2 in Eq. ~66! and setting
hG@PG#[0 in both equations. These apparently are siza
corrections that were not considered previously. Howev
these terms cancel exactly if the homologous dynamics
Sec. III is applicable for the bubble interior. Also, accordi
to Eq. ~61!, hG50 for a homogeneous bubble.

~ii ! The influence of the external acoustic driving field
consistently taken into account in our treatment of the so
field outside of the bubble. The terms proportional tova ,
i.e., the incoming velocity field or its derivatives, were n
glected before; only terms involving the driving pressurePa
had been obtained. These additional terms are necessa
restore the boundary condition on the sound field ar
5R(t); see the comment after Eq.~67!.

~iii ! A realistic EOS for the liquid~63! has been employed
here. Forn@1 the enthalpyhL@PL# in Eqs. ~66! and ~69!
f

a-
l

h-
r-

s

ce.
r-

le
r,
of

d

to

reduces to@PL(R)2P0#/rL , which was used earlier instead
The viscous term proportional tohL was not studied before

~iv! The pressure boundary condition~56! contains terms
that have been neglected before:

PL~R!5PG~R!2
2s

R
2~3hbG14hsL!

Ṙ

R
1S 4

3
hsL1hbLD

3S 2

R
va2

1

c
$] tva~r ,t !%RD1O„~Ṙ/c!2

…, ~70!

where we used Eq.~57! and inserted the shear and bu
viscosities for liquid and gas explicitly. Except for a high
compressed or, rather, very hot gas@2#, its bulk viscosity
presents a negligible contribution in Eq.~70!, being on the
percent level as compared to liquid water at most. Howev
we also note the corrections due to the incoming sound fi

If we discard altogether the modifications just discuss
we reproduce Eqs.~9! and~10! of Ref. @4#. In Sec. V we will
explore numerically the effects of the corrections discus
here.

B. The driving sound field

Having further studies of single-bubble sonoluminesce
in mind, we determine here those quantities entering our
sults that depend on the external acoustic driving field.
typical experiments on single-bubble sonoluminescence
ried out to date the driving sound frequency is approximat
n'25 kHz, which translates into a wavelength ofl'5.9 cm
given the sound velocity in water ofc51481 m/s. Relevant
bubble radii are such thatR/l&1023 @4,17#. Therefore, we
consider the external field in the long-wavelength limit.

Following Ref. @4#, we assume a plane standing wav
f5Asin(kz)cos(vt), i.e., along thez axis with v[2pn and
k[2p/l5v/c. In the long-wavelength limit, withr &R
!1/k, the spherical component of the external fieldf in de-
termines the dominant driving force for spherically symm
ric bubble oscillations. Expressingz5z01rcosu, wherez0
denotes the presently irrelevant position of the center of
bubble, we can project the spherically symmetric monop
component of the driving field to obtain

f in~r ,t !5
A

2
cos~vt !E

21

1

d~cosu!P0~cosu!sin~k@z0

1rcosu#!5Asin~kz0!cos~vt !
sin~kr !

kr
, ~71!

with P0[1 denoting the appropriate Legendre polynomia
We recall thatP(R,t) contains the contribution of the

incoming sound field, i.e., the external ‘‘acoustic drivin
pressure’’

Pa~r ,t ![2rL] tf in~r ,t !5PAsin~vt !
sin~kr !

kr

5PAsin~vt !S 12
1

3!
~kr !21O„~kr !4

…D ; ~72!



i

le
e
i-
c

ic
a

io

e
r
a

x-

de
th

-
-

n

he

.e.,
y
III,
ty
r
a

the
l
ng
e

q.
ior

nce
lu-
fol-

-
h,
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cf. Eq. ~28!. The amplitude of the acoustical pressure field
PA[vrLAsin(kz0). Similarly, the velocity fieldv(r ,t) has
an external contribution

va~r ,t ![] rf in~r ,t !5
PA

crL
cos~vt !S cos~kr !

kr
2

sin~kr !

~kr !2 D
52

PA

3crL
cos~vt !@kr1O„~kr !3

…# ~73!

@cf. Eq. ~27!#, which also enters our results for the bubb
equation of motion and pressure boundary condition. In g
eral, both quantitiesPa andva are determined by the exper
mental setup, in particular the external ultrasound sour
that drive the bubble oscillations.

Finally, we rewrite the relevant spherically symmetr
part of the external velocity potential as a superposition of
outgoing and an incoming spherical wave. We obtain

f in~r ,t !5
cPA

2v2rL

$sin~v@ t1r /c# !2sin~v@ t2r /c# !%/r ,

~74!

which will be useful in the following section.

C. A nonperturbative bubble equation of motion

We present in this section the bubble equation of mot
resulting when we do not use the expansion inṘ/c that was
employed in Sec. IV A; see Ref.@3# for earlier related work.
Since the velocity potentialf obeys the spherical wav
equation~13! for the presently considered case of a sphe
cally symmetric gas bubble immersed in a liquid, we c
immediately write down its most general form~see Sec. II B!

f~r ,t !5
1

r
@ f ~ t ret!1g~ tadv!2g~ t ret!#, ~75!

with arbitrary functionsf andg and where

t ret[t2r /c, tadv[t1r /c. ~76!

The terms involvingg represent the external field, an e
ample of which was considered in Sec. IV B; see Eq.~74! in
particular. Generally, the relative sign between the retar
and advanced contributions results from the requirement
the external field be regular atr 50, i.e., the position of the
center of the bubble. The term involvingf presents the ad
ditional outgoing~sound! contribution to the velocity poten
tial that is generated by the moving bubble wall.
s

n-

es

n

n

i-
n

d
at

Then our task is to determine~or eliminate! the functions
f andg such thatf satisfies the velocity boundary conditio
~15!:

Ṙ5] rfuR52
1

cR
@cf1 f 8~ t ret!2g8~ tadv!2g8~ t ret!#R,

~77!

where f 8(x)[d f(x)/dx, etc., and Eqs.~75! and ~76! were
used to obtain its present form. Similarly, we rewrite t
pressure boundary condition~56!:

PL~R!2hL

1

r
] r

2~rf!uR5PG~R!2~4hsL13hbG!
Ṙ

R
2

2s

R
.

~78!

Here we made use of the velocity boundary condition, i
the first equality of Eq.~77!, and assumed the linear velocit
profile inside the bubble, which was introduced in Sec.

v5] rf5rṘ/R for r<R, which determines the gas viscosi
term proportional tohbG . As we pointed out already afte
Eq. ~56!, only the bulk viscosity of the gas contributes for
linear ~homologous! velocity profile.

Furthermore, as discussed in Sec. IV A, we employ
Navier-Stokes equation~53! as the underlying dynamica
equation of motion of the gas and liquid fluids. Integrati
over the radial coordinater , we obtained the nonperturbativ
equation~66! before, which we presently rewrite as

2S ] tf1
1

2
~] rf!2D

R

5I1h@PL#2
hL

rL

1

r
] r

2~rf!uR,

~79!

where h@PL# denotes the liquid enthalpy evaluated in E
~64! and we collected terms pertaining to the bubble inter
into

I[2
1

2
RR̈1hG@PG#, ~80!

with the gas enthalpyhG from Eq. ~61!; note thathG50 for
a homogeneous density inside the bubble. We recall o
again that the contribution of the bubble interior was eva
ated assuming the linear velocity profile. The discussion
lowing Eq.~66! furthermore implies thatI[0 for the case of
exactly homologous bubble interior dynamics~cf. Sec. III!.
Equations~77!–~79! completely determine the bubble mo
tion, i.e.,R(t), as we shall demonstrate now. To begin wit
we simplify the rhs of Eq.~79! by using
hL@PL#2
hL

rL

1

r
] r

2~rf!uR5hLFPL2hL

1

r
] r

2~rf!uRG2
1

n

hL

rL

1

r
] r

2~rf!uR

PL2P02hL

1

r
] r

2~rf!uR

P01P1
1•••, ~81!
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which follows from Eq.~64!. Neglecting the small cross term
~and higher-order corrections! between the viscosity an
compressibility of the liquid as before, we eliminatePL and
replace the argument ofhL@ # with the help of the pressur
boundary condition~78!. The result is

hL@PG~R!2~4hsL13hbG!~Ṙ/R!2~2s/R!#[hL,
~82!

which we henceforth abbreviate as indicated.
In order to proceed, we calculate

] tfuR5
1

R
@ f 8~ t ret!1g8~ tadv!2g8~ t ret!#R

5
1

R
@2cRṘ2cf12g8~ tadv!#R, ~83!

where we used the boundary condition~77! in the second
step. Inserting this result together with] rfuR5Ṙ and the
above evaluation ofhL back into Eq.~79!, we obtain

cṘ1
c

R
fuR2

2

R
g8~ tadv!uR2

1

2
Ṙ25I1hL. ~84!

We have to eliminatef in order to arrive at the closed equ
tion for R(t), which we are after.

Taking the time derivative of Eq.~84!, employing Eq.
~83! once more, and solving the resulting equation forf, one
finds explicitly

c

R
fuR5

R

11Ṙ/c
F R̈S 12

Ṙ

c
D 2

cṘ

R
1

Ṙ2

R
2

1

c

d

dt
~I1hL!G

12
g8

R
22

g9

c
, ~85!

whereg8 stands forg8(tadv)uR andg9 similarly. Reinserting
this result into Eq.~84! yields

cṘ1
R

11Ṙ/c
F R̈S 12

Ṙ

c
D 2

cṘ

R
S 12

Ṙ

c
D 2

1

c

d

dt
~I1hL!G

2
2

c
g92

1

2
Ṙ25I1hL, ~86!

from which we will derive our final results.
First of all, we obtain a perturbative equation of motio

for R(t) by expanding the factor (11Ṙ/c)21 in powers of
Ṙ/c and collecting terms. Taking up to second-order corr
tions into account, the result is

RR̈F122
Ṙ

c
12S Ṙ

c
D 2G1

3

2
Ṙ2F12

4

3

Ṙ

c
1

4

3
S Ṙ

c
D 2G

2
2

c
g9~ t1R/c!

5F11
R

c
S 12

Ṙ

c
D d

dt
G ~I1hL!

1O„~Ṙ/c!3
…. ~87!
-

It is straightforward to calculate higher-order corrections
this case, if necessary. Equation~87!, when evaluated includ-
ing only first-order corrections inṘ/c, essentially agrees
with our previous perturbative result, Eq.~69!. To see this,

note thatdI/dt generates a term proportional toR̂, using Eq.
~80!. The third-order derivative can then be eliminated sim
larly as in Eqs.~67!–~69!.

However, a crucial difference remains in that presen
we treat the external field exactly, which is represented h
by the term proportionalg9, whereas in Sec. IV A the exter
nal field was treated perturbatively on the same footing
the sound field generated by the bubble wall motion. By
comparison of Eqs.~74! and ~75! ~the external field terms
involving g) we find here explicitly

2
2

c
g9~ t1R/c!5

PA

rL
sin~v@ t1R/c# ! ~88!

for the example of an external standing plane wave pres
field discussed in Sec. IV B. We remark thatṘ/c may vary
systematically between less than about 1 ns and about 10
during a nonlinear oscillation cycle with bubble paramet
in the SBSL regime. Neglecting this retardation in the ext
nal field term, terms related to the bubble interior, and mo
fications due to the realistic liquid EOS and enthalpy, E
~63! and ~64!, which enter our derivations, we again repr
duce Eqs.~9! and ~10! of Ref. @4# if we truncate Eq.~87! at
O(Ṙ/c).

Alternatively, instead of expanding Eq.~86!, we simply
multiply this equation by the denominator 11Ṙ/c to obtain

RR̈S 12
Ṙ

c
D 1

3

2
Ṙ2S 12

1

3

Ṙ

c
D 2

2

c
S 11

Ṙ

c
D g9~ t1R/c!

5S 11
Ṙ

c
D ~I1hL!1

R

c

d

dt
~I1hL!, ~89!

which presents the nonperturbative bubble equation of m
tion; it agrees with the result of Ref.@3# in the limit of the
idealized adiabatic liquid EOS employed there and negle
ing the bubble interior~except for the pressure bounda
condition!.

V. NUMERICAL RESULTS

We now turn to a numerical study of characteristic pro
erties of a single air bubble in water at standard laborat
conditions~STP!, i.e. at the ambient temperatureT5293 K
and under the ambient pressureP051 atm51.013 253105

kg/m s2. Solutions of the nonperturbative equation of moti
~89! will serve as our standard, with which other results sh
be compared.

The following material ‘‘constants’’ of water~STP! will
be used @2#: density rL5103 kg/m3, surface tensions
50.073 kg/s2 ~water-air interface!, and sound velocityc
51481 m/s. This latter value is about 2% higher than the o
that follows from the adiabatic water EOS~63! at STP with
the parameters given in Ref.@5#, n57 andP1533108 kg/
m s2, which we employ in Eqs.~64! and~82!. The shear and
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57 4181SOUND OF SONOLUMINESCENCE
bulk viscosities of water~STP! are @2# hsL51.00231023

kg/m s andhbL52.91hsL .
The ‘‘standard’’ air bubble we study has an equilibriu

radiusR05431026 m. The adiabatic index isg51.4, char-
acteristic of diatomic molecules. The equilibrium radius a
the particle numberN in the bubble, or equilibrium gas den
sity r0, are related through the van der Waals EOS~44! and
pressure boundary condition~78! with PL5P0 ~STP!, which
corresponds to the following set of parameters@2#: N
50.91331010, van der Waals excluded volume43 pa3

50.04 l/mol, and ratio of equilibrium to hard core dens
r0 /ra50.0023. For the air viscosities we take@2# hbG
50.6hsG51.0831025 kg/m s, which indeed make a negl
gible contribution in the context of our study.

The applied driving sound field~cf. Sec. IV B! will be
chosen to oscillate with the frequencyn5v/2p526 kHz in
all examples. Its amplitude will be fixed atPA51.35P0, ex-
cept when stated otherwise.

In the numerical calculations we consider the abo
specified parameters as prescribed constants, but kee
mind that, e.g., the sound velocity and surface tension m
change appreciably. The use of a constant adiabatic in
has been questioned before@1# since various transport effect
leading to entropy production may become important. W
follow Ref. @1# in that we artificially increase all viscositie
by a factor 3, which has been found necessary to fit
standard Rayleigh-Plesset equation, i.e.,R(t), to the experi-
mental data obtained by light-scattering methods@11,17#.

In Fig. 1 we show the full cycle of the time-depende
radiusR(t) of the air bubble in water~full line!, the bubble
surface velocityṘ(t) ~dashed line!, and the sinusoidal exter
nal driving pressurePa(r 50,t) according to Eq.~72! ~over-
laid full line together with zero line, arbitrary units!, which
coincides with the relevant long-wavelength limit. We int
grated numerically the nonperturbative equation~89! for a
homologous bubble, in which caseI50 according to Eq.
~80!. However, the gas pressure entering through Eq.~82! is
evaluated here for a homogeneous bubble for the mom
we shall consider the effect of the inhomogeneity in S
V C. We note that on the scale of Fig. 1, theR(t) curves

FIG. 1. RadiusR ~full line! and surface velocityṘ ~dashed line!
as a function of time for an air bubble in water computed accord
to the nonperturbative equation~89!. The time-dependent driving
pressure withPA51.35P0 is shown ~overlaid together with zero
line, arbitrary units!. See the text for specification of other syste
parameters and further details.
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calculated with the other equations derived in this work
the one used before in Refs.@4,10,13,15#, for example, can-
not be discriminated for our typical parameter set. Therefo
we will in the following pay more attention toṘ(t), which is
much more sensitive to the differences between the var
equations of motion.

A. Perturbative vs nonperturbative equations of motion

The equations of motion that have been used to st
driven gas bubbles in liquids in the SBSL parameter regi
incorporated effects of the sound emission only in the low
order in Ṙ/c so far; see, e.g., Refs.@1,4,13# and further ref-
erences therein. In view of the high velocities of the bub
surface reached during the collapse phase, which may re
Ṙ/c'1 ([Mach 1), as indicated in Fig. 1, we study he
how the various approximate treatments of sound damp
compare to the nonperturbative equation~89!. The bubble
interior is treated here as explained in the context of Fig
above. The individual sections in Fig. 2 show the surfa
velocity Ṙ(t) at the first bounce~left column! and the second
bounce~second column! for different amplitudes of the driv-
ing pressure~top to bottom;PA in units of P0); the origin of
the time axis is arbitrarily chosen for the first bounce and
delay until the corresponding one for the second bounc
indicated in each case. The results are obtained from
nonperturbative equation~full line! and its lowest order in
the Ṙ/c perturbative expansion~dashed line! @cf. Eq. ~87!#,
respectively. In the latter case also the retardation shifting
time argument of the driving pressure term@see Eq.~88!# has
been neglected, in conformity with earlier work.

It is obvious from Fig. 2 that characteristic phase shi
result with respect to the cycle timing set by the exter

g

FIG. 2. Surface velocityṘ(t) for the bubble of Fig. 1 at first
bounce~left column! and second bounce~second column! for dif-
ferent amplitudes of driving pressure~from top to bottom; in the
figuresP51.25,e.g., stands forPA51.25P0, etc.!; the delay be-
tween origins of the time axes between the bounces is indica
Results from the nonperturbative equation~89! ~full line! and the
perturbative equation~87! ~dashed line! are shown; see the text fo
further details.
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4182 57H.-THOMAS ELZE, TAKESHI KODAMA, AND JOHANN RAFELSKI
driving pressure and between the first and subseq
bounce~s!. Physically most important is the fact that with
the perturbative treatment the maximal surface velocity d
ing the collapse is overestimated by a considerable amo
e.g., '250 ms21 for the first bounce atPA51.35P0. This
implies that the collapse is significantly less violent than h
been concluded from previous theoretical treatments of
bubble dynamics. In particular, quantitative SBSL estima
derived from models that couple the perturbatively correc
Rayleigh-Plesset equation@cf. Eq. ~69!# to a full hydrody-
namic simulation of the bubble interior may need a revis
@10,12,15#. We are led to this conclusion also from the va
ous other corrections to be discussed shortly.

The origin of the retardation of the first bounce in t
perturbative approach is shown in Fig. 3 to be due to
neglect in the perturbative expansion of the time retarda
effect. When the retardation is included as in Eq.~88!, then
the positions of the first perturbative and nonperturbat
bounce coincide. However, the perturbative expansion
cluding the retardation effect continues to introduce an ov
estimate of the collapse velocity. This leads to a remain
phase shift of 15–20 ns between first and subsequ
bounce~s!, as seen in the bottom portion of Fig. 3.

B. Homologous vs homogeneous bubble interior

In order to demonstrate the influence of the behavior
the bubble interior on the overall dynamics of the coup
bubble-liquid system, beyond just providing the pressure
sisting the collapse, we consider here how the homolog
bubble description developed in Sec. III compares with
usual simpler homogeneous matter distribution model of
bubble interior.

FIG. 3. Same as Fig. 2, however, employing the nonperturba
equation~89! ~full line! and the perturbative equation~69!, compris-
ing time retardation~dashed line!.
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We exploit here the presence of a fixed pointj* @Eq.
~52!#, where the density remains nearly constant. The p
ence of this fixed point cannot be expected in general; h
ever, we presently make this assumption based on our
merical experience with the description of homologous a
adiabatic changes of the interior distributions. We can eva
ate Eq.~45! conveniently integrating fromj* R to R. With
P* [P(r* ) @see Eq.~44!#, which denotes the gas pressure
the corresponding homogeneous bubble, we obtain the
lowing approximate result for the homologous gas press
at the bubble surface:

PG~R!5P* S 12
g21

2

~12j
*
2 !r* RR̈

~12r* /ra!P*
D g/~g21!

. ~90!

Employing this expression for the gas pressure in the n
perturbative equation of motion~89!, we find the results de-
picted in Fig. 4 ~full line!, where also the behavior of
homogeneous bubble~dashed line! is shown for comparison
We observe only a rather small effect onR(t), except for a
1.5-ns shift of the minimum. However, similarly to the e
fects illustrated in Fig. 2, we find here another sizable red
tion of the maximal collapse speed ('200 ms21). The
maximum of the gas pressure at the homologous bubble
face is reduced by about 5%, as compared to the homo
neous one, which amounts to'103 atm. However, the maxi-
mal gas density at the surface is much less affected
reaches approximately one-half liquid density in our calcu
tional example.

e
FIG. 4. Comparison of the radiusR ~top! and surface velocityṘ

~bottom! for the bubble of Fig. 1, using Eq.~89!, for a homologous
~full line! and a homogeneous~dashed line! bubble.
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57 4183SOUND OF SONOLUMINESCENCE
C. The sound field of a SBSL bubble

As a further application of our study of the sound fie
imposed on and rescattered by a typical SBSL bubble
evaluate it at a given distance away from the bubble, whe
can be measured by a hydrophone, which preferably sh
be sensitive to the highest expected sound frequencies@1,11#.
Perturbatively, it is most convenient to obtain the sou
pressure using Eq.~28! or ~35! in the form

P~r ,t !5Pa~r ,t !1
R̃

r
@P~R̃, t̃ !2Pa~R̃, t̃ !#, ~91!

whereR̃[R( t̃ ) and t̃ can be further evaluated with the he
of Eq. ~24! or ~25!, whichever applies. The pressure diffe
ence on the rhs here can then be computed easily from
solution of the perturbative equation of motion~69! ~cf. Sec.
V A ! since it is implicitly part of it.

The result at the lowest nontrivial order inṘ/c is shown
in Fig. 5 for r 51 mm away from the center of the bubbl
We clearly see the outgoing compression spikes riding on
sinusoidal driving pressure, which are caused by the bub
collapse and successive bounces. On the pressure sca
this figure~cutting off the first maximum! the nonperturba-
tive result would be indistinguishable from the perturbat
calculation.

We calculate the pressure field nonperturbatively beg
ning with Eq. ~91!, as before. However, we proceed in th
case by using the pressure boundary condition~78! in order
to calculateP(R,t)[PL(R). The term proportional to2hL
in particular can be evaluated in the long-wavelength lim
~neglecting a cross term between the viscosity and compr
ibility ! to yield 2vhLPAcos(vt)/3c2rL , while all other terms
are straightforward to obtain from the numerical solution
the nonperturbative Eq.~89!; cf. the remarks explaining the
calculation of Fig. 1 in Sec. V A.

In Fig. 6 we show the nonperturbative evaluation of t
first sound pressure spike atr 51 mm. For comparison, als
the somewhat earlier and considerably stronger spike g
by the perturbative calculation~cf. Fig. 5! is shown. If we
correct the calculated amplitude here for the geometric
persion, then the pressure atr 50.6 mm reaches 4.53104

atm at maximum. Applying the generic damping factor

FIG. 5. Pressure amplitude atr 51 mm from the center of the

bubble of Fig. 1, calculation includingO(Ṙ/c) corrections; see the
text for further details.
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1024 for the absorption of a~300 MHz! pulse traveling 1
mm, we arrive approximately at the pressure amplitude m
sured experimentally for a SBSL bubble under conditio
similar to those assumed in our calculation@1,11#. However,
another interesting aspect here is the rise time of the so
signal, i.e., from one-half to maximum amplitude, whic
takes only 40 ps~decay time 260 ps!. This is about two
orders of magnitude below what has been resolved in
above-cited experiments.

Finally, in view of the pressure spike results presen
here, it seems worthwhile to check one of our basic assu
tions, which is the linear acoustic approximation~Sec. II A!.
It is underlying the linear wave equation for the veloci
potential ~13!, which forms the basis of our study of th
emitted sound field. Whereas dispersion and absorption
be incorporated in a linearized approximation, genuin
nonlinear effects are beyond our present scope@2#. The linear
approximation requires that perturbations of the ambi
state of the fluid are relatively small. Employing the ad
batic liquid EOS~63! for water and considering the max
mum of the pressure amplitude obtained here~see Fig. 6!, we
obtain a maximal compression and ratio of sound speed

max
r

rL
'1.4, max

c~r!

c~rL!
'2.7, ~92!

respectively. Whereas the compression may appear to
quite tolerable, the temporary increase of the sound sp
and its implications for the damping of the bubble motio
when the sound pulse is launched from the collapsing bub
surface, obviously deserve further study. Furthermore,
may wonder about the behavior of the water next to
bubble surface, when it is exposed to the ‘‘cold shock’’ i
dicated by our results, i.e., several 104 atm pressure increas
within less than 50 ps.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

The aim of our present work has been to reconsider
sound emission from the highly nonlinear, large-amplitu
motion of the interface between the gas inside and the liq
outside a cavitating bubble. Previous studies typically eva

FIG. 6. First spike of the outgoing compression pulse launc
by the collapsing bubble; see Fig. 5. For comparison the resu
the nonperturbative calculation~smaller, later pulse! is shown to-

gether with the perturbative one atO(Ṙ/c).
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4184 57H.-THOMAS ELZE, TAKESHI KODAMA, AND JOHANN RAFELSKI
ated the radiated sound field in lowest order of a perturba

expansion inṘ/c, i.e., valid for slow bubble wall motion a
compared to the sound velocity in the liquid. Generally, it

believed thatṘ(t) reaches up to~or even exceeds! the sound
velocity for externally driven bubbles in the parameter
gime where sonoluminescence is observed experimen
@1#. This necessitates a nonperturbative treatment, suc
ours@cf. Sec. II B and see Eq.~28!, in particular#. We antici-
pate that the sound signal from a nonlinearly oscillat
bubble wall may provide an important additional diagnos
tool. It should reflect the essential short-time scale~s! of this
motion, which vary over several orders of magnitude@4,13#,
with current technology limiting the resolution in the (10
MHz)21 range, i.e., less than about 10 ns. This may be p
ticularly valuable in cases where light-scattering metho
@11,17# do not truly reflect the motion of a sharply define
bubble wall or are not applicable at all, such as for liqu
metals@6#.

We recall that based on Sec. III, we describe the bub
interior using homologous profile functions for the dens
and velocity distributions. These allow for a more realis
study of the dynamics and particular properties of the hi
compression phase of strongly driven bubble oscillations,
importance of which has been shown earlier@10,12#. Here
we employ only a simplified version of the semianaly
variational approach developed in Refs.@13,14#. In any case,
our derivation of Eq.~89! allows us to incorporate easily an
more precise model of the bubble interior, and it may
possible to extend this approach in order to account for
important effects of heat conductivity and mass diffusion

Our numerical examples obtained in Sec. V employ
another approximation the homologous solutions with
usual adiabatic van der Waals EOS. These EOSs bec
questionable when the energy density reaches the ioniza
regime. The dynamic behavior of the gas mixtures within
rapidly oscillating bubble, here assumed to remain that o
diatomic gas~air!, deserves further study. In parallel to th
cyclic ingassing and outgassing from the liquid into t
bubble~‘‘rectified diffusion’’ !, it remains to be seen whethe
an essential amount of liquid vaporizes at the bubble sur
and recondenses during an oscillation cycle. Related eff
may help explain the observed sensitivity of sonolumin
cence to experimental parameters such as temperature in
ticular @1,18,19#. In general, transport phenomena within t
bubble and across the phase boundary have to be inco
rated whenever the motion becomes fast compared to c
acteristic relaxation timest i , Ṙ'D i /t i , whereD i denotes
the scale of a corresponding gradient~e.g., mass density
partial pressure, and temperature!. In particular, shock waves
may be launched into the bubble interior@4,15,16# or exterior
@10#, the description of which is beyond the scope of th
work.

One may speculate whether or not the liquid~water! may
be trapped in a metastable state with respect to solidifica
into a high-density phase~of ice! and in which form the
corresponding binding energy would be released most
ciently. Presumably it stays at or close to the ambient te
perature@10#. Assuming an effective sound velocity of 200
m/s, the 300-ps mean half-width of the pressure pulse
tained in Sec. V C corresponds to a spatial shell width of
n
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mm, i.e., about the van der Waals hard-core radius emplo
in our calculations. Near the collapsed state withR'0.6 mm
such a shell contains about 1011 water molecules, i.e., only
about an order of magnitude more particles than assume~in
the gas! inside. Furthermore, the sound pulse amplitude
creases exponentially away from the bubble surface~in ad-
dition to geometric dispersion proportional to 1/r ) due to
absorption in the liquid@2#. Then, assuming an extreme
conservative decay proportional to exp@2Dr(mm)/0.434#,
one immediately estimates that the energy dissipated in
first shell ~proportional to square of amplitude decreas!
amounts to about 3/1000 of the pulse energy. This is m
than an order of magnitude times the energy emitted in
form of visible light by a SBSL bubble@1#. The small spa-
tiotemporal extension of the region where this energy ha
be dissipated definitely deserves further study. This sho
provide an improved starting point for the exploration
essential aspects of the violent bubble collapse that may
elucidate the nature of sonoluminescence. We hope to re
to one or the other of these fascinating aspects of SB
bubbles that are especially related to their sound field in
future work.

We note that while in principle the effect of a dynam
treatment of the bubble interior on the behavior ofR(t),
which we introduced in Sec. V B and Fig. 4, should be p
of a full hydrodynamic simulation@10,12,15#, the sound
emission discussed in Sec. V A had not been treated prop
in any of the approaches prior to our work. In view of th
numerical results presented in Sec. V, it is obvious that
nonperturbative treatment of the emitted sound field as p
posed here, which accounts for about 50% of the dampin
the driven bubble oscillations, is mandatory. In particul
the standard perturbative calculations tend to overestim
the maximally reached surface velocity during the collap
phase considerably. Thus a crucial aspect of the ‘‘prepara
phase’’ for the unknown light-emission process can be
scribed more accurately by employing the nonperturba
equation of motion derived in Sec. IV C@Eq. ~89!#. This
seems particularly relevant for detailed hydrodynamic st
ies of the bubble interior, in which the exterior has be
described by the perturbative Rayleigh-Plesset equation
fore @4,10,12,15#. Our numerical results for the nonperturb
tive sound pulse emitted by an air bubble in water~Sec. V C!
fit qualitatively the first experimental observations report
in Refs.@1,11#. On the other hand, as we pointed out at t
end of Sec. V C, they also indicate the limitation of o
present derivations. Whereas the bubble equation of mo
~89! is derived from the intrinsically nonlinear Navier-Stoke
equation, in the form of Eq.~79! of Sec. IV C, our consider-
ations of the emitted sound field are based on the acou
approximation~see Sec. II B!. Therefore, we still neglect im-
portant sound absorption and dispersion effects in the liq
Using the realistic EOS for water@Eq. ~63! in Sec. IV A#, we
indicated in Eqs.~92! the compression of the liquid and th
corresponding increase in the density-dependent sound
locity, which are induced by the outgoing pressure spike n
to the bubble surface. It seems desirable to study in the
ture the importance of nonlinear effects on the propaga
and fate of the extremely strong sound pulse emitted.

There are published results on full hydrodynamic simu
tions of the coupled bubble-liquid system, which include e
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pecially the exterior fluid@16#. However, to the best of ou
knowledge, so far no attention has been paid to the unu
behavior of the liquid, which may be caused by the press
spike of 104–105 atm launched from the bubble surface, i
dependently of whether or not there are shock waves ge
ated in the bubble interior. We obtained such amplitudes
typical examples with generic SBSL parameters, where p
ticularly their rise time of only about 40 ps seems quite
tounding, but also reminiscent of the shortness of the SB
light pulses.
.
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