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We consider an air bubble in water under conditions of single-bubble sonolumines&8%¥ and evalu-
ate the emitted sound field nonperturbatively for subsonic gas-liquid interface motion. Sound emission being
the dominant damping mechanism, we also implement the nonperturbative sound damping in the Rayleigh-
Plesset equation for the interface motion. We evaluate numerically the sound pulse emitted during bubble
collapse and compare the nonperturbative and perturbative results, showing that the usual perturbative descrip-
tion leads to an overestimate of the maximal surface velocity and maximal sound pressure. The radius vs time
relation for a full SBSL cycle remains deceptively unaffectegil063-651X98)12403-0

PACS numbgs): 47.35:+i, 43.28:+h, 43.35:+d, 47.10+¢g

I. INTRODUCTION nisms that damp the collective motion of the bubble-liquid
system have been incorporated in modern approaches: vis-
This extensive study of the sound produced in single<osity of the liquid and sound dampifg]. The effects of the
bubble cavitation is prompted by the recent interest in“rectified” mass diffusion[1,5] and heat conductivitysee,
sonoluminescencsL), i.e., the conversion of externally ap- e.g., Ref[10]) also play an important role in establishing the
plied sound in a liquid into lighf1]. It has been generally parameter regime for stationary SBSL, but will not be further
accepted that the SL light emission is intimately connected teliscussed here. In the SBSL cycle the sound emission pro-
the dynamics of the gas-liquid interface, though the specifigluced during the violent bubble collapse turns out to be the
mechanism producing the light flashes has not been uniquebyost important energy-loss mechanighil 1]. Less than half
identified. We present here a nonperturbative study of thef the energy in the bubble is dissipated by the viscous fric-
sound radiated from the subsonically moving phase boundjon. Only a comparatively tiny fraction of the energy deliv-

ary between the gas bubble and the liquid in which it iSereq to the bubble by the external sound wave is radiated in
immersed. In our approach we rely on the standard treatise ¢f o form of visible light[1,11].

the subjecf2]. Apart from the importance of sound emission We will use the linear acoustic approximati¢see Sec.

as the primary damping mechanism under the extreme COMlr ), which describes the subsonic propagation of density

ditions of sonoluminescence, the sound signal can be used Rrturbations in a fluid neglecting the effects of sound wave

another diagnostic tool to study the bubble dynamics. Fof;. . . : S
detailed accounts of related previous theoretical studies oqlspersmn and absorptiq?]. This approximation does not

the cavitation sound see Ref8,4], including references to fallow us t9 study situations involving shock wave formatipn
earlier work. We proceed here in two distinct steps. To begi n the liquid. !n Sec. |l B we solve the sounq wave equation
with, the motion of the gas-liquid phase boundary is assume r_the_ veI(_)cny potential exactly _for any giveR(t). Qur
to be given and we determine the resulting sound field. Secierivation is formally exact provided the assumptions of
ond, we consider the feedback effect of the radiated soungondissipative fluid dynamics are valid. Our expressions ac-
field onto the phase boundary dynamics, i.e., we describe tHe?unt in full for retardation and allow an arbitrary incoming
motion of the bubble self-consistently. sounq field. The key result is the. exact form of the pressure
The (multi)bubble cavitation has been studied intensely2MPlitude radiated from the moving bubble surface into the
for some time because of important applications and interSurrounding liquid; see Eq28). In order to compare with
esting underlying fluid dynamicg5—7]. The discovery of earlier analytical .and numer_|cal work we also derive in Sec.
well-controlled experimental conditions by Gaitan and Crum!! C the perturbative expansion of our general results in pow-
[8] permitting the study of a single gas bubble over longers ofR/c, i.e., the bubble wall velocity divided by the liquid
periods of time, together with the ability to drive it externally sound velocity.
by acoustic waves, has focused the experimenta| interest on In Sec. Il we describe a model of the bubble interior that
the single-bubble sonoluminescent®BSL) phenomenon. is motivated by the approximately homologous dynamics ob-
The remarkable finding here is that light is produced in veryserved in numerical hydrodynamic simulatidd2]: The gas
short pu|se$9]: 100 photons of several eV energy are emit- density distribution and VE|OCity field have been found to
ted within 50 ps by apparently about ®Gtoms/molecules show a simple scaling behavior in terms of the scaled radius
from a gas bubble of submicrometer radius. variableé=r/R(t) and withv (r,t)~ ¢R, respectively. These
The standard theoretical tool in the study of the bubblenumerical results recently have motivated the development
surface dynamics is the Rayleigh-Plesg®) equation, rep- of a semianalytic approach for the coupled bubble-liquid sys-
resenting the motion of the gas-liquid interface by the time-tem, based on a Lagrangian variational princif8,14], of
dependent(spherical bubble radiusR(t). Several mecha- which a simpler variant will be used here. This allows us to
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assess the order of magnitude of the feedback effects of the The basic equations of nonviscous hydrodynamics are the
bubble interior dynamics. following.

With this preparation we can proceed in Sec. IV to the (i) The continuity equation for the fluid densigy which
second step indicated above, i.e., the derivation of a selfensures the conservation of mass, is
consistent bubble equation of motion. There exists already a .
variety of equations generalizing the Rayleigh-Plesset equa- dp+V-(pv)=0, 1)
tion (see e.g[5-7]) and more recent ones that consider the
case of the externally driven damped nonlinear bubble oscilwherev denotes the local fluid velocity.
lations in the SBSL parameter regini8,4]. In our self- (i) The Euler equation, arising from Newton’s equation
consistent approac{BSec. IV A) we make extensive use of of motion for a small fluid cell, is
the results obtained in Sec. Il. We incorporate the external
sound field in Sec. IV B according to standard experimental thz;: ~VP, 2
conditions realized to date. In Sec. IV C we derive a nonper-
turbative equatiori89), which is formally valid to all orders whereP denotes the local pressure in the nonviscous fluid

in R/c (<1), however, subject to the linear acoustic ap-and the comoving derivative is defined =d,+uv-V.
proximation scheme. We incorporate the bubble interior ustater we will consider the Navier-Stokes generalization for
ing the van der Waals equation of state and allow also for &iscous flow; see Eq53).

realistic equation of statéEQS of the liquid. Our deriva- (ii) In the absence of entropy production the set of equa-
tions are based on the Navier-Stokes equation and thus takiens is closed by the EOS relating the pressure to the den-
the effects of the liquid and gas viscosities consistently intcsity. For example, the ideal gas EOS is

account.

We illustrate our formal results in Sec. V by studying Plp]=Kp”, y=Cp/Cy, 3
numerically the properties of an air bubble in water exter- ) . ) .
nally driven by an ultrasound field with system parameters iff/here the adiabatic index denotes the ratio of the specific
the typical SBSL regimél,11]. We show in detail there that €@t at constant pressure and volume, respectively.
the various(nonperturbativecorrections incorporated in the ~ Had we allowed the sound waves to disturb the medium
bubble equation of motion generally result in sizable correc®"d generate entropy, we would require an EOS with two

relating the pressure to the mass and energy

tions of the maximal bubble surface velocity during the col-Varaboles, e.g.,

lapse. They tend to make the bubble collapse less violerfiensities. In this case we wo_uld _have to introduge addition-
than seen in previous perturbative descriptions. In Sec. v &y the energy conservation in differential form, in order to
we compute the outgoing compression wave emitted front!0S€ the set of equations. _ _
the bubble surface into the surrounding liquid and consider " the following we study small-amplitude, acoustic per-
the validity of the acoustic approximation. We present finaltUrPations of an ambient state of the fluifjuid and gas
remarks and conclusions accompanied by a brief summary Gharacterized by the ambient solutions to E¢8—(3),
our work in Sec. VI. Po,vg,po- In order to obtain equations governing the pertur-
bationsP* ,u* ,p*, we set
Il. SOUND EMISSION FROM PHASE BOUNDARIES L
— * — * — *
We reexamine here the sound radiation originating from a P=PotP™,  v=uvotv®, p=potp”. @
moving phase boundary between two nonviscous fluidsyyserting these expressions into E@8—(3), a coupled set of
separated by an idealized wall of vanishing thickness. Refetaquations results, which relates various powers of the pertur-
ences to earlier work on this subject are surveyed in Refgyations. The description of perturbations can be further sim-

[2,6,7. Related issues were studied recently in REF. I pjified by assuming a particularly simple ambient state
distinction to these approaches, we derive exact expressions

for the sound field emitted from a spherical boundary under- Po(i,t):const, Jo(i,t)=5, po(i,t)zconst, (5)
going arbitrary motion. We begin in the next subsection by
recapitulating some aspects of nonviscous hydrodynamicise., a homogeneous state independent of timaiescent

that lead to théacousti¢ approximation scheme used here in statg. Then the equations linearized in the perturbations be-
describing the sound generation and propagation. come

A. Acoustic approximation ap* +poV-v* =0, (6)

The linear acoustic approximation is based on the as- R .
sumption that the sound field causes only small perturbations podw™* =—VP*, (7)
of the ambient state of the fluid characterized by a vanishing
velocity field and constant density and presq@ie Thus we
shall not consider here nonlinear phenomena, such as the
dispersion and absorption of sound waves in the medium and
in particular the formation of supersonic shock waves. Wewhere we made use of a Taylor expansion in order to obtain
shall see quantitatively in Sec. V that this scheme is fairlyEq. (8) and introduced théconstant sound velocityc for the
well satisfied, though the amplitude of the generated soundmbient fluid state. Combining Eq&)—(8), we obtain the
field typically reaches up to fatm near to a SBSL bubble. well-known wave equations

P* = vKp2? 1p* =c2p* 2=£ 8
YKpy “p* =cp”, C_ap’ (8)
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gt2p* —C2AP* =0, ‘9t2P* —c2Ap* =0. (9) return. Its description, i.e., pertaining to the bubble interior,
requires a suitable modification of the present approach; see
Next we introduce the velocity potentidl. Consider the  Sec. Il
curl of Eq. (7): With R(t) given by other dynamics, our objective now is
- o - - to determine implicitly the outgoing velocity potentidl,,;.
podiV Xv*=—-VXVP*=0, (10 For this purpose we recast Ed.6) into the form of an ordi-

) I > . ) o . nary linear first-order differential equation with known time-
i.e., VXv*(x,t)=C(x). Thus, if the vorticity of the velocity  gependent coefficients:

field perturbatiorﬂ* vanishes initially, then it remains zero
always. In this case we can write 1 1 1

- —F-——
R?2 CR1-R/c

=R, (17)
v =V, P*=—poi¢, (12)

where the relation between the velocity potential and thqvgzgai,we used of the following substitutions and simple re-

pressure perturbation is chosen such that the linearized Euler

equation(7) is automatically satisfied. Inserting the ECS t_(H)=t—R(t)/c=t_=1—-R(t)lc (18)
into the linearized continuity equatidf) and using Eq(11), '
one obtains the wave equation for the velocity potential: df dt_ 1 f(t.)
. f'(t—-RIC)= — —— — = ———, (19
d2p—c?A¢p=0. (12 dt- dt t_ 1-R/c
For simplicity, we suppress from now on the asterisk super- F()=f(t_(0)=F()=Ft_(1)). (20)

script introduced in Eq4).
In Eqg. (17) we note the retardation factor originating in Eq.

B. Outgoing spherical wave dynamics (19). The general solution of Eq17) is elementary:
Assuming spherical symmetry and using spherical coordi- R(t) t c t
nates, the velocity potential is seen to satisfy the usual scalar F(t)= Fomex — | dt/ ——=R(t) | dt’
spherical wave equation 0 o R(t) to
C2 . . t c
o=r[a$¢— T&f(rd))] =d2(r¢)—c29X(rp). (13 X[c=R(t")JR(t")exp — fwdtlﬁ , (21

The generic solutiongregular at infinity are outgoing and whereF,=F(t,) denotes the integration constant. It is fixed
incoming spherical waves by the requirement that no outgoing wave should be excited
. . before the bubble wall is set into motion &t Therefore,
ou=r""f(t=rlc), in=r""g(t+ric). (14 iy R(t<ty)=0, we findFy,=0. The resulting constraint
For the spherically symmetric bubble wall located at the po{= to 1S most conveniently implemented by a step function

sition r =R(t) the boundary condition is factor 6(t—1to).
Using Eqgs.(14) and(20), we can recover from the above
v(R)=d,b(r,1)|i—ry=R(1), (15  Solution the outgoing velocity potential. To do this we will

_ need the inverse functioh(t_)=t of t_(t) [Eq. (18)]. Note
where we introduced the notatiot=dX/dt. In general, the thatt is a single-valued function if and only if_(t)=t
solution of the wave equatiofl4) will be composed of a —R(t)/c is either strictly increasing or strictly decreasing
linear superposition of incoming and outgoing sphericalwith time. For subsonic bubble wall motidn (t) is strictly
waves. We shall allow for the possibility of an incoming j,creasing, since +R/c>0, andT is strictly increasing in

acoustical waveg;,, €.g., as part of the external driving yhis case. This allows us to perform variable substitution at
sound field, and rewrite Eq15) in more detail: will and we obtain

1 1 1
(9r¢out|r=R: - ?f(t_R/C)_ ﬁf,(t_R/C) ¢out(ryt): FF(t (t—l’/C))

= R_0”r<’5in|r=RE,Rv (16) - _ G(S—to)R(S)Jsdt"
rJt
where ¢,,; has been substituted by an outgoing spherical °

wave; cf. Eqgs.(14); henceforth we use the abbreviation ) ) s C

f'(x)=df/dx. The external fieldp;, is kept arbitrary in the X[c—R(t”)]R(t”)exp( - f”dt' —,) :

derivations to follow, but will be incorporated according to a ‘ R(t")

physically relevant example in Sec. IV B. (22
In principle, there will be also a sound field generated by

the moving phase boundary that will travel into the interior, s=T(t—r/c)=t— r—R(s) 23

to be reflected at the center of the bubbte=Q), and then c
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The retardation effect seen here can be evaluated more ex- s s _
plicitly. For example, I(s)= t dt”h(t”)exp{ - L,dt'[J(t')—J(S)]}
0
~ r—R(t—r/c xXexpj(s)(t"—s
t(t—r/c)wt——(C ), r>R(t) (29 RS ¥
o1
=> —K® s)—j dt"exp{j(s)(t"—s)}
- r—R(t) i=o n!
t(t—r/c)~t— - r=R(t). (25 " .
1 d 1—expj(s)(tg—s
In order to calculate the velocity and pressure fields, we n=0 1" ]
require the derivative of :
where
Tt—R(t)/c)=t = t'(t_) . (26) dn s
- c)=t = _)= —= . 2 . :
1-R(t(to))c K<”>(s)zﬁh(t)exq’ —L dt'[J(t')—J(S)]]
Then, differentiating Eq(22), we obtain §>tg) (3D)

_ We remark that the exponentially small correction tefar
v(r0 = doulr D)+ din(r,1)] s>t,) on the right-hand sidéhs) of Eq. (30) can be attrib-
' uted to transient contributions to the integral or rather to the
RR (1 1\F
= + 3, din(r,t), (27)
t(t—r/c)

R r

function F [Eqg. (21)], which are due to the switching on of
the bubble wall motion considered in Sec. Il B. Since we will
be mainly interested in the nonlinear oscillatory motion of

r

P(r,t)=—pLo doudr )+ din(r,t)] the bubblg wall when aI'I Fransients have died out, we can
neglect this term for sufficiently late times. Thus we obtain
CPL F
RR+ o —pLain(r.t), (28 .
T(t—rlc) I(s) :2 (_1)nK(n)(S)jfnfl(s), (32

where all functions within the curly brackets are to be evalu-

ated at the indicated time argumen(t—r/c)=s; hence- which presents the starting point of our approximate evalua-
forth p_ denotes the ambient density of the liquid. We recalltion of the velocity potential.

thatP is the pressure perturbation due to the generated sound Employing Egs.(21) and (22) from Sec. 1l B together

field, to be added to the ambient pressure. with Egs.(29) and(32) above, we obtain
C. Series expansion for the sound field RZ(S) * R(s) R(t)

The results obtained for the velocity potential and the ve- Poulr,1)= E ( c ) din\ T ¢ R(D)
locity and pressure fieldgEqgs. (21)—(28) in Sec. Il B], in-
volve an integration over the history of the bubble wall mo-
tion. Thus the corresponding nonlinear differential equation Xexq’(s S R(s) f dtR(t)H
describing it self-consistentl§Sec. V) could be expected to
become nonlocal in timésee, however, Sec. IV)CIn any _ { R 1R
case, for sufficiently slow motion a local approximation can =——Ri1-2—| 1+ 57—
be justified(see Refs[4—-7] and earlier references thergin r ¢ 2 RR

this approach leads to a popular generalization of the RP
equation. Therefore, our next objective is a systematic ex-
pansion in powers oR/c of our general expressions, in par-
ticular of the velocity potential22).

C

+2 142+ —

RR R 2RR

RZ( RR R'R 1 R%R

Let us consider an integral of the forfin our casej +O((RIc)?) 33)
=c/R,h=(1-RIc)R] .
S S i
I(s)zﬁ dt’h(t )exp{ - L,dt i )], (29 where as befors=T(t—r/c); see Eq(22). The expansion
0

has to be carried out up to order4 in order to acquire in
with >0 ands=>ty; cf. Eq. (21). For a sufficiently large the R/c expansion all second-order terms. Our result reduces

integrand in the exponential the integration ovewill be 10 Ed. (18) of Ref. [4] at the O(R/c) obtained there, pro-
effectively limited to a small range next to the upper limit ~vided we replacei) R(t) —R(t), i.e., we ignore effects of an
This suggests the expansion incoming sound fieldcf. Eq. (16)], and (ii) t(t—r/c)—t
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—[r—R(t)J/c. The latter approximation amounts to neglecting We solve the continuity and Euler equatiqi$ and(2) of

already som@©(R/c) corrections in Eq(33) due to retarda- Sec. Il A, respectively, by approximating the density and ve-

tion effects. locity fields with suitable scaling functions. We neglect dis-
To conclude this subsection, we calculate the velocity an@iPative effects in the bubble, such as viscosity, heat conduc-

pressure fields generated by a driven oscillating bubble walfion, and radiation transfer especially. Presently, we are

i.e., the sound emitted, by combining Eqg2), (27), and interested in a semiquantitative analysis of the bubble inte-
(28), respectively, and Eq33): rior. This seems sufficient for our later derivation of the

overall bubble dynamics: The motion is largely determined
RZR  RRR R 1 RR by the dynamics of the fluid since only a minor fraction of

(1) =0 in(r, 1)+ ——+2- T( 1- ?) 555 the relevant total energy resides in the interior at any time.

r RR For a detailed understanding of the microscopic processes
leading to sonoluminescence inside the bubble, however, the
dissipative effects will be essential ingredients.

It turns out(see Refs[13,14]) that for a time-independent

shape of a properly scaling density distribution the velocity
potential is

R RR RR 1R?R
- —| 14+2—+—+=—
c RR RZ 2R2R

+0(( R/c)z)] , (34)
T(t—r/c)

1R
o . . rty=-—=r? r<R, 36
which illustrates nicely that our expansion reproduces the ¢(1.) 2R (36)

incompressible fluid ¢— o) limit; furthermore, . . ) )
in terms of the bubble radiuR(t), which yields

R (R,
RO\R G0

3 E( 1+2@+Ee 1R R) i.e., a linear radial velocity profile. The continuity equation

P(r,t)=—p.d o+ 2Privel 14 SRR R 1
(r,)=—pLdipin(r,t) r 2 RR U:é’r(ﬁ:ﬁr’ (9t¢:§

c RR R? - 2 R2R. (1) takes the form

R\
e+3gze|d+ead], (38

. 1
+O((R/c)2)} : (35 O=dp+ r—zar(erv)z
T(t—r/c)

where the inverse of the retarded time function has to bgvhere we introduced the homologous ansatz
inserted everywhere as indicated before. p(r )=o) A(E), (39)

[1l. HOMOLOGOUS BUBBLE INTERIOR DYNAMICS with é=r/R(t) denoting the scaling variable. Here we find
indeed that the velocity potenti#B6) is consistent with a

In Sec. IV we want to derive the equation of motion of thetime—independent density profile function, i.e.,

phase boundarybubble surfaceself-consistently. For this
purpose we need to understand the dynamics of the interior d(&t=d(¢), (40)
of the bubble. In distinction to Sec. Il, presently we have to

take into account that the density, pressure, and velocitgnd the overall density factor of E¢39), normalized toN
fields inside the bubble may change by several orders gbarticles inside the bubble,

magnitude during different phases of tfgeriodig bubble

motion. Therefore, a linearization of the hydrodynamic equa-

tions of motion around a homogeneous and time-independent e(t)= 1 (42)
ambient state, as performed in Sec. Il A, is not applicable 47'rR3('I)j0 dé £2d(¢)
here.

In the hydrodynamic studies of the interior motion the We ChOOSEj(l)El in the following i.e.p(R t):Q(t) We

emphasis has been on the understanding of the developmeRker the reader to Reff13,14) for the variational improve-

of the extreme conditions inside the bubljles,16. Chu \ent of the strictly homologous dynamitsee[12] and ref-
noted that for an important part of the SBSL cycle the bubblg,ences thereinthat we will pursue here, with a time-

motion is(nearly) homologous, i.e., the shape of the dens'tyindependent yet scaling density profile function.
distribution and the velocity field of the gas scale in an ap- |4 order to determine the scaling functioig&), we con-
propriate way with the radiuR and surface velocitiR [12].  sider the integral of the Euler equatifaf. Eq.(2)] which for
The numerical simulations in the SBSL parameter regimeyur radially symmetric case yields

indicate a homologous contracti¢and its stability until the

onset of shock wave formation and independently of the de- 1 o ro 1

tails of the EOS used. This stability of the homologous mo- Idlrt Emr(ﬁ) lR=" Rdr;&fp' (42)
tion may be related to the fact that only for the homologous

motion there is no energy loss due to viscosity inside thdn the absence of entrof®/production the integral on the rhs
bubble[see Eq(60) and below. is the enthalpy:
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JRd 1 fRdP
; r;arP— Cp ~Po(o(t)/po)?, that is, whenever the ratidoRR(t)/
(43) P(R,t) is approximately constant.

High density In this limit, inserting Eqs(39)—(41) into
whereE=E/N is the specific energy per particle. Eq. (47), we obtain

During the highest compression particle densities reached
in the bubble interior are similar to those in the liquid out-

=h(R)—h(r), h=€+E,
s P

—— 1 B
side. We thus use here for the gas an adiabatic EREQ. i( @) ypiRR [1=e(W)/pal” :qh:d(g) 1,
(3)] with van der Waals hard-core corrections 2y\pal Py e(t)/pa 1— &2
(50
p\"[pPa=po|” <[ plpo \”
P<p>=P0(— ( ——| =Po| —; ) S . . N .
Po/ \ Pa—P Pipa where again the |hs is only a function of time, while the rhs

is only a function of¢, and thus we can introduce the con-

' EY stantq;,. In deriving Eq.(50) we employed an additional
at the ambient pressui, and p, “=(4m/3)a’/N in terms expansion ford(£)~1 on the rhs, which is consistent with

of the van der Waals excluded volume. The adiabatic indeX,q high-density cas under consideration. Solvin
v for ideal monatomiddiatomig gases is 5/37/5). Related the rhg for the zensit?/O(;rg?i)le function, we obtain g
EOSs have been applied to calculate the gas pressure before

Herepg (<py) is the density at which the bubble interior is
*l:

[4,13,15.

Performing the integral in Eq42) using Eq.(44) and dn(£)=1+0,(1- ¢, (52)
employing the scaling form for the velocity potenti@6),
we obtain[ {=r/R(t)] while the Ihs determines the value of the parameger as

before. The limit of validity of this result is controlled by the

requirement that the expression on the lhs remains time in-

R dependent. Note that the high- and low-density profiles agree

(450  with each other fory=2; however,y= 3/2 and 5/2 for mon-
atomic and diatomic gases, respectively.

r

1 . P / i 1
2 po\1=plpy 1-plpy v—1

__ ﬂ(ﬂ) 7 l(L+O( 1o || We remark that the numerical values @f and gy, in
Po\ Po y—1 Pipal IR general, vary depending on the dynamical regime and always
(46) g=-—1. It is important to realize that Eq$48) and (50)
_ present implicit equations fog, and q;,, respectively. The
Pol pa\” ; reason for this is thap(t), because of the normalization in
S m[“‘ O(1-plpa)llr:  Eq.(41), depends on the integrated density profile and thus

(47) on the respective by Egs.(49) and(51). In practice, these
“constants” will be treated as adiabatically changing param-
where EQs.(46) and (47), respectively, represent the low- eters to be computed self-consistently from the equations
and high-density limits of the rhs of E#5). Obviously, the  derived here.
van der Waals correction introduces an additional scale that We observe that as the bubble goes through the cycle
makes it difficult to find a universal density shape function.determined by the driving pressure, the shape of the matter
Therefore, we consider the low- and high-density cases iulistribution inside the bubble changes, controlled dy

turn. which remains nearly constant during much of the cycle and
Low density Inserting Eqs(39)—(41) into Eq. (46), we  changes rapidly in sign near the bubble collapse or bounce,
obtain wheneverR=0, where the |hs of Eq(45), (48), or (50)
. vanishes, andy=0, ensuring in this transition instant a
y=1poRR/ po |77* d7H(§)-1 (nearly homogeneous density distribution. For negative val-
2y P, lo(t) -a= 1-¢2 49 les ofqg the highest density is found at the surface, corre-

sponding to a collapsing phase; similarly, positive values of
Since the left-hand sidéhs) here only depends anand the g with the highest density at the center correspond to an
rhs only on¢, we have introduced a constant paramefer €xpanding phase of the bubble motion. We found that there
characterizing the time-independent density profile. Solvings an approximate fixed poimfR=¢, in the motion, where

the rhs, we find the average density corresponding to a homogeneous bubble
is maintained during the entire cycle:
di(§)=[1+q(1-£H]"0 D, (49
We note that the Ihs of Eq48) determines the value of the px=p(£&RO=N/(47IR1)°, §{,~0.78. (52

parameterq, and thus we can verify if indeed it is time

independent. From this we conclude that this low-densityThis will turn out to be a very useful property, which we

(p<<p,) functional form of the density profile function is shall exploit in deriving specific numerical results in Sec.
approximately valid for inertial motion wittlR~0 or, more V B, where we compare the bubble dynamics for a homoge-
generally, when the bubble wall acceleraf@®celerates neous and a homologous interior, respectively.
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IV. DERIVATION OF THE BUBBLE EQUATION

— R
OF MOTION _PG(R)+(77@_77@)§=—PL(R)+ ol =g
Having studied the effects of a given bubble wall motion )
on the exterior liquid and the bubble interior in Secs. Il and —R 20
[1l, respectively, we now turn to the question how this mo- "R R (56)

tion can be determined self-consistently. That is, assuming

an external driving sound fiele;,, we want to derive an Using Eq.(26) and the velocity field34), we calculate,v|g
equation of motion for the bubble radi&as a function of  for the outer liquid:

time. We also take the bubble interior into account. Its dy-

namics may have little influence on most of the cycle of R . R R

stable bubble oscillations. However, in order to improve the d,v(r,t)|,_g=—2=—R 1| —2=+ =4,
. ; . R R c

understanding of the final stage of the violent collapse

[13,14), it has to be considered. In addition to the sound 2

emission from the moving phase boundary, which constitutes +| =] ;|0 din(r,t)

a major energy-loss mechanism, the effect of viscous damp- r=R

ing will also be incorporated here, which is of a similar order L2 . . g
of magnitude to acoustic damping. Despite the fact that our —ZE( E) ( 1+2R_R+R_R+ } R_R
considerations so far were based on the assumption of non- R\c RR R? 2R%R
viscous fluid dynamics, i.e., approximately free wave propa- .

gation in particular, we can include dissipative and driving +0((R/c)®), (57
forces in the equation of motion f&(t) by deriving it from

the Navier-Stokesmomentum balangesquation. Thus only where the first term on the rhs corresponds to the incom-
the back reaction of viscositand other dissipative transport pressible fluid limit €—») in the absence of an external
effect on the wave propagation and velocity potentials  driving sound field.

neglected here. Several remarks are in order here.
(i) The bubble gas pressure at the surfaeg(R)
A. The (generalized Rayleigh-Plesset equation =Pgs(ps(R,1)) is determined by the van der Waals EOS

We begin with the Navier-Stokes equation generalizing(44) together withpg(R,t) =0(t), according to Eqs(39)

. . .~ ¥and (41) for the homologous density function. The liquid
the Euler equatiofisee Eq(2)] to the case of viscous fluids vapor pressure inside the bubble is not considered at present.

2]. For our spherically symmetric situation this equation can — .
[2] P y sy a (i) We observe thajg— 7¢ =37y, in terms of the bulk

be written in the form ) ; >
viscosity of the gas, which is generally very small compared
1 ) 1 7 (1, to liquid viscosities. The shear viscosity does not contribute
h¢p+ 5 ) ]=——(9rp+—f9r(7f9r(f¢))- (53 here at all; cf. also the remark after E@0) below. For
P P completeness, we allow for viscous damping in the gas in-
where ¢(r,t) denotes the appropriate velocity potential, i.e.Side the bubble, even though it might at best become impor-
for the interior or exterior region, ang=3%7.+ n, is the tant during the rapid collapse and high compression phase.
relevant combination of shear and bulk viscosities of the (iii) We recall that by definition of the inverse of the
fluid entering here. Similarly, the pressuPehas to be speci- retarded time functioii26) we havet [t—R(t)/c]=t; there-
fied differently according to whether the interior or exterior fore, the rhs of Eq(57) has to be evaluated at the tirhe
of the bubble is considered. In the following the boundary conditioi56) together
Due to the phase change at the bubble surface, there ariseth Eq. (57) will be employed to eliminat®, (R) in terms
a nontrivial boundary condition relating the normal compo-of the other quantities, which by now are explicitly calcu-

I

nents of the stress tensbrinside(gag and outsideliquid):  |ated functions oR, R, R, etc. In order to proceed, we con-
5 vert the Navier-Stokes equatiofb3) together with the
ﬁ'Ee'ﬁ=ﬁ'2L'ﬁ— _U, (54) t_)oundary condit_ior(56) into an ordinary_differential equa-

R tion for R(t). This can be achieved by integrating over the

) . . radial coordinate, i.e. , the approach advocated earlier in Ref.
where the term proportionat denotes the “pressure” con- [3] for example. Symbolically, in obvious correspondence
tribution due to theliquid) surface tension for the liquid-gas \yith the terms on the left- and right-hand sides of E58),
interface and the viscous stress tensor has to be evaluated {Q& optain

N R o0 R s}
JoeJejermet
0 R 0 R

the respective fluid under considerati®j:
R )
I Vi f +f dr D= dr P+ dr v,
n-3.n= _P"‘??!?rU_TU , (55 o JR

(=R (58)

where n=37,—27,, n was defined after Eq(53), and where we split the integrations at=R because of the dif-
v(r,t)=49,¢(r,t), as usual. Then, employing the boundaryferent phases inside and outside. Making use of the results of
condition (15) and the velocity potentia(36) for the gas Secs. Il and Ill, we proceed to evaluate each term of the
phase, we obtain, instead of E&4), more explicitly generalized Bernoulli equatiof®8) in turn.



57 SOUND OF SONOLUMINESCENCE 4177

Using the velocity potential36) for the bubble interior, liquid pressure on the bubble surfaBg(R) will be elimi-
we obtain nated via the pressure boundary condit{6).
. < The last(viscous term from Eq.(58) can be evaluated
f dr D= f dro,
0 0

1 1 . ; G
g+ 5(‘9’@2} _ ERR’ (59) employing the approximatiop~p, :
R R 1
f dr VEJ dr@a,<—a§(r¢)>=o. (60)
0 0 p r

“ e [T (L oL,
JRdr v_fRdr P 0r(r0r(r¢>))— oL rr?r(r¢>)|r=R

S

R
We observe that the homologous scaling solution for the = pL[2§+5rU|r—R], (65)
bubble interior ¢cr? does not give a contribution to the
integrated viscous force term here. This remarkable resulte  neglecting a cross term between the viscosity and com-
suggests that viscous forces drive the bubble motion to thgressibility of the liquid, which will be justified by the nu-
homologous limit, which we discussed in Sec. lll and is inmerical results presented in Sec. V C. It is worthwhile to
this respect quite uniqueL2—14. Furthermore, employing recall that in Eqs(59)—(65) all the functionsR, R, R, etc.,

the van der Waals EO%44), we calculated the enthalpy : :
integral for the gas inside the bubble bef¢oé. Egs. (43 }ﬂ:g? appear on the rhs, are to be evaluated simply at the

and(45); Collecting the essential results from Eq59)—(65), we

R R 1 y—palpalR obtain the equation of motion for the bubble radR(4), i.e.,
drPE—J dr—g,Pg=—P —_— odr D= [gdr(P+)), in the form
| 0 Pe=—Palpo) Tt fgdr D=fdr(P+)
_ 1 . 1. 1
=hg[Pgl, (61) 3 RR- R+ —P(R) =hq[Pe]+h [P(]
L

where we rewrote our previous result of E45) in terms of )
the van der Waals expression for the pressure and denote by 7| R
hg the gas enthalpy. r 25+l -gr(- (66)

diately from our derivations in Sec. Il: and is nonperturbative ifR/c. In fact, inserting here our
(27) and(28), respectively, we obtain an important generali-

(28) and evaluated approximately in E@5): henceforth we with a perturbative evaluation of terms involving the gener-

term on the rhs of Eq62) simply follows from the boundary N Eq. (66) the expansions i/c, especially Eqs(35) and

R
Next, we turn to the evaluation of the corresponding inte-
grals for the exterior region. The first integral follows imme- Thjs equation is valid for any subsonic bubble wall velocity

w o 1 1 1. general results of Sec. Il B for the sound field generated by
f dr D EJ dr 4,y d;p+ E(arqs)z] = p—P(R,t)— ERZ’ the bubble, in particulas (r,t) andP(r,t) calculated in Egs.

R R L

(62) zation of the Rayleigh-Plesset equation.

where P(r,t) denotes the pressure field calculated in Eq. In order to illustrate the contents of E(6), we proceed
denote byp, the ambient density of the liquid. The second f';lted sound field making use of our results of Sec. Il C. Using
for r— .

In order to calculate the enthalpy integral for the liquid, 1 . 1. 1 c . R . R
we employ an EOS that gives a realistic description for many ERR_ §R2+ oL Pat ZRR( 1- c +RR| 1~ 43)
liquids [5]:

2 .. 1 g
3 p n (pr_ 5 _ERRR_ERR
PL(p)=(PotPy) o — Py, W_C (p), (83
- =hg[P]+h.[P.]
whereP, denotes the ambient pressure ang, are param- 1 1
eters depending on the liqui@.g., for watem=7, P;=3 —Zﬂ[ =~ o lua(r,b) +0O((R/c)?).
kban. Then it is straightforward to obtain pLI[R 2c (_R

f drPE—f dr—a,P.
R R P

n Py+P;
n-1 p

We observe that foR=0, i.e., when the bubble wall veloc-
(n—=1)/n ity is identical to the incoming acoustical velocity field rat
— l] =R(t), all terms involving 1¢ corrections vanish. However,
on the rhs the viscous damping term survives, which in-
=h,[P.], (64) volves only the incoming sound field. This is to be expected
since no outgoing sound wave is generated, in agreement
using P(r—«) =P, i.e., the ambient pressure, and wherewith the nonperturbative results for the velocity and pressure
h, denotes the liquid enthalpy. As mentioned before, thdields,v=v,=9,¢;, andP=P,=—p d;¢;, in this case.

PL(R)+P,
Pot Py
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We arrive at a more useful form of the bubble equation ofreduces tg P, (R) — Pyl/p, , which was used earlier instead.

motion by eliminatingR from Eq.(67). This can be achieved The viscous term proportional tg, was not studied before.
at the same order iRR/c by using the equation at leading (iv) The pressure boundary conditi¢s6) contains terms

> that have been neglected before:
order (i.e., forc—=) to calculateR and thenR: g

. 2(d 9.. 1. . . 20 R (4
RR= 2| :[rhs.]- SRR Pt 2Rua+ 3R +Rua PLR)=P&(R)~ 5~ (37ba+ 47505+ | 3 75+ 7oL
(68) 1
_ - - 2
where the tern{rhg..] denotes the rhs of Eq67) in the X RVa C{ﬂ‘va(r’t)}R +O(R/C)Y, (70

limt c—o and P,=P4Rt), v,=vaRt), P,

=(d/dt)P4(R,1), i;az(d/dt)va(R,t), etc., from now on. where we used Eq(57) and inserted the shear and bulk
Reinserting this expression into E@7), we finally obtain  viscosities for liquid and gas explicitly. Except for a highly

the equation compressed or, rather, very hot g, its bulk viscosity
presents a negligible contribution in E0), being on the
i 1 R\ 2 val 3. 4 R_Ua percent level as compared to liquid water at most. However,
RR|1+5]{1- 23 t3¢ ERZ 1- 37 we also note the corrections due to the incoming sound field.
- = If we discard altogether the modifications just discussed,
_ _ R R2 we reproduce Eqg9) and(10) of Ref.[4]. In Sec. V we will
—2Rv,— Rva( 1-(1+1) = | += —v, explore numerically the effects of the corrections discussed
-c/ 3¢ here.
1\R d
—| 1+ ( 1_§)E dt . he[Pel+hi[P.] B. The driving sound field
B Having further studies of single-bubble sonoluminescence
—ZE{ (l_ ia )U (r t)} _ ip in mind, we determine here those quantities entering our re-
pu IR 2778 o op ® sults that depend on the external acoustic driving field. For

) typical experiments on single-bubble sonoluminescence car-
+0O((R/c)?)=0, (69  ried out to date the driving sound frequency is approximately
v~25 kHz, which translates into a wavelengthxo£5.9 cm
where we separated out the underlined terms in order to fagiven the sound velocity in water @f=1481 m/s. Relevant
cilitate the discussion of our result; the term proportionalbubble radii are such th&/A <102 [4,17]. Therefore, we
d/dt|;_... is to be read as “take this limit of the following consider the external field in the long-wavelength limit.
expression before evaluating the derivative.” Equati68) Following Ref.[4], we assume a plane standing wave:
generalizes previously considered variants of the Rayleighg = Asinkzcost), i.e., along thez axis with w=27v and
Plesset equation. In comparison to earlier related work, palk=27/\=w/c. In the long-wavelength limit, withr <R
ticularly Refs.[3,4,13, we draw attention to the following. <1/, the spherical component of the external fielg de-
(i) The dynamics of the gas in the interior of the bubble agermines the dominant driving force for spherically symmet-
well as of the exterior liquid is fully incorporated in our ric bubble oscillations. Expressirg=z,+ rcos, wherez,
derivation. It is based on the Navier-Stokes equati®®  denotes the presently irrelevant position of the center of the

supplemented by the boundary condititB6) relating the  bubble, we can project the spherically symmetric monopole
normal components of the stress tensor at the bubble surfacemponent of the driving field to obtain

Neglecting the bubble interior amounts to setting the under-
lined numerical constants in Eq69) to zero, which is
equivalent to neglectingRR/2 in Eq. (66) and setting
hg[ Pg]=0 in both equations. These apparently are sizable in(kr)
corrections that were not considered previously. However, e SINCKT
these terms cancel exactly if the homologous dynamics of reosd]) = Asinkz)cog wt) kr
Sec. lll is applicable for the bubble interior. Also, according
to Eq.(61), hg=0 for a homogeneous bubble.

(ii) The influence of the external acoustic driving field is
consistently taken into account in our treatment of the sounﬂ1
field outside of the bubble. The terms proportionalutg,

A 1
din(r,t)= Ecos{wt) fﬁld(cosﬁ) Po(cosh)sin(k[ z,

 (77)

with Po=1 denoting the appropriate Legendre polynomial.
We recall thatP(R,t) contains the contribution of the
coming sound field, i.e., the external “acoustic driving

. . . o - AR pressure”

i.e., the incoming velocity field or its derivatives, were ne-

glected before; only terms involving the driving pressbtg .

had been obtained. These additional terms are necessary to P(F )= p. dicbi(r 1) = P asin(wh) sin(kr)
restore the boundary condition on the sound fieldrat a1 U= =pLdrin(T, asin(e kr

=R(t); see the comment after E(G7).
(iii) A realistic EOS for the liquid63) has been employed

1
_ ; _ = 2 4.
here. Forn>1 the enthalpyh, [P, ] in Egs. (66) and (69) Pasin(wt)| 1= z7(kn"+0((knT]; - (72
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cf. Eq.(28). The amplitude of the acoustical pressure field is Then our task is to determir(er eliminate the functions
P,=wp Asinkz). Similarly, the velocity fieldv(r,t) has f andg such thaty satisfies the velocity boundary condition

an external contribution (15):
; . 1
0alF D=0, (1 1) = CP—Acos{wt)( con) —S'”“‘g)) R=0, 8=~ [+ (tie =0 (tag) ~ ' (e T,
L (kr) 7
P
=—T;\Lcos{wt)[kr+0((kr)3)] (73)  wheref’(x)=df(x)/dx, etc., and Eqs(75) and (76) were

used to obtain its present form. Similarly, we rewrite the
[cf. Eq. (27)], which also enters our results for the bubble pressure boundary conditidb6):
equation of motion and pressure boundary condition. In gen-
eral, both quantitie®, andv, are determined by the experi-

mental setup, in particular the external ultrasound sources 1, _ R 20

that drive the bubble oscillations. PLR) =7 7 (r ¢)lg=Pe(R) (4nst3me)g~ |
Finally, we rewrite the relevant spherically symmetric (78)

part of the external velocity potential as a superposition of an ) . .

outgoing and an incoming spherical wave. We obtain Here we made use of the velocity boundary condition, i.e.,

the first equality of Eq(77), and assumed the linear velocity
profile inside the bubble, which was introduced in Sec. lll,

cPy . _ v=43,¢=rRIR for r <R, which determines the gas viscosity
Gin(r.t)= ——{sinw[t+r/c]) —siNw[t—r/c])}r, term proportional ton,s. As we pointed out already after
@ P (7 Eqg. (56), only the bulk viscosity of the gas contributes for a

linear (homologous velocity profile.
which will be useful in the following section. Furthermore, as discussed in Sec. IV A, we employ the
Navier-Stokes equatiori53) as the underlying dynamical
equation of motion of the gas and liquid fluids. Integrating
o . ) _over the radial coordinate we obtained the nonperturbative
We present in this section the bubble equation of motionaquation(66) before, which we presently rewrite as
resulting when we do not use the expansiomRiic that was
employed in Sec. IV A; see Rdf3] for earlier related work.
Since the velocity potentialp obeys the spherical wave P ¢+E(ﬁ ¢>)2>
equation(13) for the presently considered case of a spheri- t 20" R
cally symmetric gas bubble immersed in a liquid, we can (79
immediately write down its most general forisee Sec. Il B

C. A nonperturbative bubble equation of motion

g1
=Z+h[P ]— — = d4(r¢)|g,
pLr

where h[ P, ] denotes the liquid enthalpy evaluated in Eq.
(64) and we collected terms pertaining to the bubble interior

1 ;
$(r,) = T[f(tred) + 9(taa) ~9(tred ], (75  Into
with arbitrary functionsf andg and where 1 .
7=— 5RR+hg[Pg], (80)
tie=t—rlc, tyg,=t+rl/c. (76)

with the gas enthalphg from Eq.(61); note thathg=0 for
The terms involvingg represent the external field, an ex- a homogeneous density inside the bubble. We recall once
ample of which was considered in Sec. IV B; see &) in again that the contribution of the bubble interior was evalu-
particular. Generally, the relative sign between the retardedted assuming the linear velocity profile. The discussion fol-
and advanced contributions results from the requirement thabwing Eq.(66) furthermore implies thaf=0 for the case of
the external field be regular at=0, i.e., the position of the exactly homologous bubble interior dynamics$. Sec. ).
center of the bubble. The term involvirfgpresents the ad- Equations(77)—(79) completely determine the bubble mo-
ditional outgoing(sound contribution to the velocity poten- tion, i.e.,R(t), as we shall demonstrate now. To begin with,
tial that is generated by the moving bubble wall. we simplify the rhs of Eq(79) by using

1,
P —Po— 77LF(7r(r¢)|R

7 1 2 _ 1 2 1 ys 1 2
h [P.] oL r&r(r¢)|R_hL PL 77Lr(9r(r¢)|R n oL rﬁr(r¢)|R Pyt Py +--, (81)
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which follows from Eq.(64). Neglecting the small cross term It is straightforward to calculate higher-order corrections in

(and higher-order correctiondetween the viscosity and
compressibility of the liquid as before, we elimindg and
replace the argument &f [ ] with the help of the pressure
boundary condition(78). The result is

h [Pa(R) = (47s.+ 37b6) (RIR)— (20/R)]=h,,

(82
which we henceforth abbreviate as indicated.
In order to proceed, we calculate
1 I I !
&t¢|R:§[f (tre) +9" (tag) —9' (ted) Ir
1 I ’
= ﬁ[_CRR_C¢+29 (tadu)]R- (83)

where we used the boundary conditi¢ri) in the second

step. Inserting this result together with¢|z=R and the
above evaluation ofi, back into Eq.(79), we obtain

. C 2 , 1. 5
CR+ §¢|R_§g (tadu)|R_§R =I+h.. (84)

We have to eliminateb in order to arrive at the closed equa-

tion for R(t), which we are after.

Taking the time derivative of Eq84), employing Eq.
(83) once more, and solving the resulting equationdgoone
finds explicitly

c. R | R) CR+R2 1d .
RO RN e RTR ca T
gl g//
+25 -2, (85)

whereg’ stands forg’ (t.q,)|r andg” similarly. Reinserting
this result into Eq(84) yields

( R
Rl1-—
C

2 g SRe=T+h
_Eg A Ly

R

CR+——
1+R/c

cR R 1dIh
R\ ot

(86)

from which we will derive our final results.

First of all, we obtain a perturbative equation of motion

for R(t) by expanding the factor (& R/c)‘1 in powers of

this case, if necessary. Equati@¥), when evaluated includ-

ing only first-order corrections irR/c, essentially agrees
with our previous perturbative result, E@9). To see this,

note thatdZ/dt generates a term proportionallib using Eq.
(80). The third-order derivative can then be eliminated simi-
larly as in Eqs(67)—(69).

However, a crucial difference remains in that presently
we treat the external field exactly, which is represented here
by the term proportionay”, whereas in Sec. IV A the exter-
nal field was treated perturbatively on the same footing as
the sound field generated by the bubble wall motion. By a
comparison of Egs(74) and (75 (the external field terms
involving g) we find here explicitly

2 Pa .
- 29" (t+R/c)= —=sin(w[t+ R/c]) ®8
c pL

for the example of an external standing plane wave pressure

field discussed in Sec. IV B. We remark tHatc may vary
systematically between less than about 1 ns and about 100 ns
during a nonlinear oscillation cycle with bubble parameters
in the SBSL regime. Neglecting this retardation in the exter-
nal field term, terms related to the bubble interior, and modi-
fications due to the realistic liquid EOS and enthalpy, Egs.
(63) and (64), which enter our derivations, we again repro-
duce Egs(9) and(10) of Ref.[4] if we truncate Eq(87) at
O(R/c).

Alternatively, instead of expanding E¢B6), we simply
multiply this equation by the denominator-R/c to obtain

RR 1 F-2+3R21 LRI 2, R]y +R/
A T AR

(89

lRZh RdIh
+E(+ L)+Ea(+ L),

which presents the nonperturbative bubble equation of mo-
tion; it agrees with the result of Reff3] in the limit of the
idealized adiabatic liquid EOS employed there and neglect-
ing the bubble interiorexcept for the pressure boundary
condition).

V. NUMERICAL RESULTS

We now turn to a numerical study of characteristic prop-
erties of a single air bubble in water at standard laboratory

R/c and collecting terms. Taking up to second-order correcconditions(STP, i.e. at the ambient temperatufe= 293 K

tions into account, the result is

R'F{l 2R+2 R’ +3R2{ 4R+4 R)z
c c 2 3c¢c 3\c
2 n
—Eg (t+R/c)
R R\ d
= 1+E 1_E>dt (I+hL)

+O((R/c)d). (87)

and under the ambient pressiPg=1 atm=1.013 25< 10°
kg/m €. Solutions of the nonperturbative equation of motion
(89) will serve as our standard, with which other results shall
be compared.

The following material “constants” of wate(STP will
be used[2]: density p, =10° kg/m?3, surface tensions
=0.073 kg/¢ (water-air interface and sound velocityc
=1481 m/s. This latter value is about 2% higher than the one
that follows from the adiabatic water EQ83) at STP with
the parameters given in Rg6], n=7 andP;=3x1C® kg/
m s?, which we employ in Eqs(64) and(82). The shear and
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FIG. 1. RadiuR (full line) and surface velocith (dashed ling 500
as a function of time for an air bubble in water computed according
to the nonperturbative equatid89). The time-dependent driving
pressure withP,=1.35P, is shown (overlaid together with zero
line, arbitrary units See the text for specification of other system time(ns]
parameters and further details.

50 100 1p0 200 250 300

FIG. 2. Surface veIocit;R(t) for the bubble of Fig. 1 at first
bounce(left column and second boundsecond columnfor dif-
bulk viscosities of wate(STP are[2] 7, =1.002<10"%  ferent amplitudes of driving pressuférom top to bottom: in the
kg/m s andyny, =2.91y,, . figuresP=1.25,e.g., stands foP,=1.25P,, etc); the delay be-
The “standard” air bubble we study has an equilibrium tween origins of the time axes between the bounces is indicated.
radiusRy=4 X 10~°% m. The adiabatic index ig=1.4, char- Results from the nonperturbative equati@9) (full line) and the
acteristic of diatomic molecules. The equilibrium radius andperturbative equatiofB7) (dashed lingare shown; see the text for
the particle numbeN in the bubble, or equilibrium gas den- further details.
sity pg, are related through the van der Waals E@8 and ] ] ) ) )
pressure boundary conditidfi8) with P, =P, (STP), which calculated with the other equations derived in this work or

corresponds to the following set of parametdd: N the one used before in Ref<l,10,13,1%, for example, can-
=0.913x101° van der Waals excluded volumémrad not be discriminated for our typical parameter set. Therefore,

=0.04 I/mol, and ratio of equilibrium to hard core density We will in the following pay more attention t&(t), which is
polpa=0.0023. For the air viscosities we tak€] 7, much more sensitive to the differences between the various
=0.67,6=1.08< 10 ° kg/m s, which indeed make a negli- €quations of motion.
gible contribution in the context of our study.

The applied driving sound fieldcf. Sec. IV B will be A. Perturbative vs nonperturbative equations of motion

chosen to oscillate with the frequeney w/27=26 kHz in The equations of motion that have been used to study

all exa[]nples. Itsdamrpl)lituc_ie will be fixed 81, =1.35P, ex- driven gas bubbles in liquids in the SBSL parameter regime
cept when stated otherwise. incorporated effects of the sound emission only in the lowest

In the numerical calculations we consider the above- o
specified parameters as prescribed constants, but keep §hd€r iNR/c so far; see, e.g., Refpl,4,13 and further ref-

mind that, e.g., the sound velocity and surface tension mag§'€nces therein. In view of the high velocities of the bubble
change appreciably. The use of a constant adiabatic index'"face reached during the collapse phase, which may reach

has been questioned befdfd since various transport effects R/c~1 (=Mach 1), as indicated in Fig. 1, we study here
leading to entropy production may become important. Wehow the various approximate treatments of sound damping
follow Ref. [1] in that we artificially increase all viscosities compare to the nonperturbative equati@®). The bubble
by a factor 3, which has been found necessary to fit thénterior is treated here as explained in the context of Fig. 1
standard Ray|eigh_P|esset equation7 ||ﬁt)7 to the experi_ above. The individual sections in Flg 2 show the surface
mental data obtained by light-scattering methftk, 17]. velocity R(t) at the first bouncéleft column and the second

In Fig. 1 we show the full cycle of the time-dependent bounce(second columnfor different amplitudes of the driv-
radiusR(t) of the air bubble in wate(full line), the bubble ing pressurdtop to bottom;P, in units of Py); the origin of

surface velocityR(t) (dashed ling and the sinusoidal exter- the time axis is arbitrarily chosen for the first bounce and the
nal driving pressuré,(r =0t) according to Eq(72) (over-  delay until the corresponding one for the second bounce is
laid full line together with zero line, arbitrary unjtswhich indicated in each case. The results are obtained from the
coincides with the relevant long-wavelength limit. We inte- Nonperturbative equatioffull line) and its lowest order in
grated numerically the nonperturbative equati88) for a  the R/c perturbative expansiofdashed ling [cf. Eq. (87)],
homologous bubble, in which cage=0 according to Eq. respectively. In the latter case also the retardation shifting the
(80). However, the gas pressure entering through(Ba).is  time argument of the driving pressure tefsee Eq(88)] has
evaluated here for a homogeneous bubble for the momeniieen neglected, in conformity with earlier work.

we shall consider the effect of the inhomogeneity in Sec. It is obvious from Fig. 2 that characteristic phase shifts
V C. We note that on the scale of Fig. 1, tRét) curves result with respect to the cycle timing set by the external
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FIG. 3. Same as Fig. 2, however, employing the nonperturbative _
equation(89) (full line) and the perturbative equati®9), compris- FIG. 4. Comparison of the radil® (top) and surface velocitiR
ing time retardatior{dashed ling (bottom) for the bubble of Fig. 1, using E489), for a homologous

o ) (full line) and a homogeneouysashed lingbubble.
driving pressure and between the first and subsequent

bouncés). Physically most important is the fact that within ) ]
the perturbative treatment the maximal surface velocity dur- Ve exploit here the presence of a fixed poiit [Eq.
ing the collapse is overestimated by a considerable amouri®2)], where the density remains nearly constant. The pres-
e.g.,~250 ms ! for the first bounce aP,=1.35,. This  ence of this fixed point cannot be expected in general; how-
implies that the collapse is significantly less violent than hagver, we presently make this assumption based on our nu-
been concluded from previous theoretical treatments of thénerical experience with the description of homologous and
bubble dynamics. In particular, quantitative SBSL estimategidiabatic changes of the interior distributions. We can evalu-
derived from models that couple the perturbatively correctedte Eq.(45 conveniently integrating fron§, R to R. With
Rayleigh-Plesset equatidief. Eqg. (69)] to a full hydrody- P, =P(p,) [see Eq(44)], which denotes the gas pressure of
namic simulation of the bubble interior may need a revisionthe corresponding homogeneous bubble, we obtain the fol-
[10,12,13. We are led to this conclusion also from the vari- lowing approximate result for the homologous gas pressure
ous other corrections to be discussed shortly. at the bubble surface:

The origin of the retardation of the first bounce in the
perturbative approach is shown in Fig. 3 to be due to the y—1 (1-£)p,RR Y(y=1)
neglect in the perturbative expansion of the time retardation Pe(R)=P,| 1~ — (1=p, Ip.)P
effect. When the retardation is included as in E&p), then Py 1Pa)T+
the positions of the first perturbative and nonperturbative
bounce coincide. However, the perturbative expansion in- Emploving this exoression for the gas pressure in the non-
cluding the retardation effect continues to introduce an over- ploying P gas p

estimate of the collapse velocity. This leads to a remaininierturbatlve equation of motiof89), we find the results de-

phase shift of 15-20 ns between first and subseque icted in Fig. 4(full line), where also the behavior of a
bouncés), as seen in the bottom portion of Fig. 3 homogeneous bubbleashed lingis shown for comparison.

We observe only a rather small effect Bft), except for a
1.5-ns shift of the minimum. However, similarly to the ef-
fects illustrated in Fig. 2, we find here another sizable reduc-
In order to demonstrate the influence of the behavior otion of the maximal collapse speed=Q00 ms ). The
the bubble interior on the overall dynamics of the coupledmaximum of the gas pressure at the homologous bubble sur-
bubble-liquid system, beyond just providing the pressure reface is reduced by about 5%, as compared to the homoge-
sisting the collapse, we consider here how the homologouseous one, which amounts 4010° atm. However, the maxi-
bubble description developed in Sec. Ill compares with themal gas density at the surface is much less affected and
usual simpler homogeneous matter distribution model of theeaches approximately one-half liquid density in our calcula-
bubble interior. tional example.

(90

B. Homologous vs homogeneous bubble interior



57 SOUND OF SONOLUMINESCENCE 4183

35F

w
k=3

~
wn

Iy
o

Sound Pressure [atm]
P
v

Sound Pressure [atm]
o
Air Bubble in Water (STP)
-
o
Air Bubble in Water (STP)

\ ] I
[} h
10 15 20 25 30 35 40 16.445 16.4455 16.446 16.4465 16.447
time[ps] time[ps]

FIG. 5. Pressure amplitude a1 mm from the center of the FIG. 6. First spike of the outgoing compression pulse launched
bubble of Fig. 1, calculation includin@(R/c) corrections; see the Dby the collapsing bubble; see Fig. 5. For comparison the result of
text for further details. the nonperturbative calculatioismaller, later pulgeis shown to-

gether with the perturbative one @(R/c).

C. The sound field of a SBSL bubble

74 . -

As a further application of our study of the sound field 10~ for the absorption of 4300 MH2 pulse traveling 1
imposed on and rescattered by a typical SBSL bubble w&™M, We arrive approximately at the pressure amplitude mea-
evaluate it at a given distance away from the bubble, where #Ured experimentally for a SBSL bubble under conditions
can be measured by a hydrophone, which preferably shouffMilar to those assumed in our calculatidnl1]. However,
be sensitive to the highest expected sound frequefitjes. a_nother_mterestmg aspect here is Fhe rise tlmg of the s_ound
Perturbatively, it is most convenient to obtain the soundsignal, i.e., from one-half to maximum amplitude, which

pressure using Eq28) or (35) in the form takes only 40 pgdecay time 260 ps This is about two
orders of magnitude below what has been resolved in the

R _ above-cited experiments.
P(r,t)=P,(r,t)+ ?[P(R,t)—Pa(R,t)], 97 Finally, in view of the pressure spike results presented
here, it seems worthwhile to check one of our basic assump-
tions, which is the linear acoustic approximati@ec. Il A).
It is underlying the linear wave equation for the velocity
otential (13), which forms the basis of our study of the
itted sound field. Whereas dispersion and absorption can

whereR=R(t) andt can be further evaluated with the help
of Eq. (24) or (25), whichever applies. The pressure differ-
ence on the rhs here can then be computed easily from t

solution of the perturbative equation of motit0) (cf. Sec. be incorporated in a linearized approximation, genuinely

VA) since itis implicitly part of 't . nonlinear effects are beyond our present sd¢@peThe linear

~ The result at the lowest nontrivial order RYc is shown  gpproximation requires that perturbations of the ambient
in Fig. 5 forr=1 mm away from the center of the bubble. state of the fluid are relatively small. Employing the adia-
We clearly see the outgoing compression spikes riding on thgatic Jiquid EOS(63) for water and considering the maxi-
sinusoidal driving pressure, which are caused by the bubblg,ym of the pressure amplitude obtained heee Fig. 6, we

collapse and successive bounces. On the pressure scaledfain a maximal compression and ratio of sound speeds:
this figure (cutting off the first maximumthe nonperturba-

tive result would be indistinguishable from the perturbative c(p)

p
i max—=~1.4, max—- ~2.7, (92
calculation. pL c(pL)

We calculate the pressure field nonperturbatively begin-

ning with Eq.(91), as before. However, we proceed in this respectively. Whereas the compression may appear to be
case by using the pressure boundary conditié® in order  quite tolerable, the temporary increase of the sound speed
to calculateP(R,t)=P| (R). The term proportional to- 7. and its implications for the damping of the bubble motion,
in particular can be evaluated in the long-wavelength limitwhen the sound pulse is launched from the collapsing bubble
(neglecting a cross term between the viscosity and compresgyrface, obviously deserve further study. Furthermore, one
ibility ) to yield 2w 7 Pacos(t)/3c’p, , while all other terms  may wonder about the behavior of the water next to the
are straightforward to obtain from the numerical solution ofpubble surface, when it is exposed to the “cold shock” in-
the nonperturbative Eq89); cf. the remarks explaining the dicated by our results, i.e., several*ldim pressure increase
calculation of Flg 1in Sec. VA. within less than 50 ps.

In Fig. 6 we show the nonperturbative evaluation of the
first sound pressure spike a1 mm. For comparison, also
the somewhat earlier and considerably stronger spike given
by the perturbative calculatiofcf. Fig. 5 is shown. If we The aim of our present work has been to reconsider the
correct the calculated amplitude here for the geometric dissound emission from the highly nonlinear, large-amplitude
persion, then the pressure at0.6 um reaches 4510 motion of the interface between the gas inside and the liquid
atm at maximum. Applying the generic damping factor of outside a cavitating bubble. Previous studies typically evalu-

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK
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ated the radiated sound field in lowest order of a perturbatiopm, i.e., about the van der Waals hard-core radius employed

expansion inR/c, i.e., valid for slow bubble wall motion as in our calculations. Near the collapsed state vitth 0.6 um
compared to the sound velocity in the liquid. Generally, it issuch a shell contains about ‘tvater molecules, i.e., only

believed thaR(t) reaches up téor even exceedghe sound about an or.der of magnitude more particles than as_SL('med
velocity for externally driven bubbles in the parameter re-the gas inside. Furthermore, the sound pulse amF_’"t“de de-
gime where sonoluminescence is observed experimentalfy3S€S exponent_lally_ away from the b_Ubee surfacead-

[1]. This necessitates a nonperturbative treatment, such &4ion to geometric dispersion proportional tor)l/due to
ours[cf. Sec. Il B and see EG28), in particulail. We antici-  2PSorption in the liquid2]. Then, assuming an extremely
pate that the sound signal from a nonlinearly osciIIatingcons.ervat'v.e decay.proportlonal to @*W(mm).’o-“‘lz .
bubble wall may provide an important additional diagnostic(?ne immediately estimates that the energy _d|$5|pated in this
tool. It should reflect the essential short-time s(silef this first shell (proportional to square of amplitude d_ec_re)ase
motion, which vary over several orders of magnitlide.3, amounts to about 3/1000 of the pulse energy. This is more

. L Lo than an order of magnitude times the energy emitted in the
with current technology limiting the resolution in the (100 form of visible light t?y a SBSL bubblél]. Tﬁg small spa-

MHz) * range, i.e., less than about 10 ns. This may be Paliotemporal extension of the region where this energy has to
ticularly valuable in cases where light-scattering methods,e gissipated definitely deserves further study. This should
[11,17 do not truly reflect the motion of a sharply defined pyoyide an improved starting point for the exploration of
bubble wall or are not applicable at all, such as for liquidessential aspects of the violent bubble collapse that may help
metals[6]. elucidate the nature of sonoluminescence. We hope to return

We recall that based on Sec. Ill, we describe the bubbléo one or the other of these fascinating aspects of SBSL
interior using homologous profile functions for the density pubbles that are especially related to their sound field in our
and velocity distributions. These allow for a more realisticfyture work.
study of the dynamics and particular properties of the high- we note that while in principle the effect of a dynamic
compression phase of strongly driven bubble oscillations, thgeatment of the bubble interior on the behavior Rft),
importance of which has been shown earfi£0,12. Here  which we introduced in Sec. V B and Fig. 4, should be part
we employ only a simplified version of the semianalytic of a full hydrodynamic simulatior{10,12,13, the sound
variational approach developed in Rdf3,14]. In any case, emission discussed in Sec. V A had not been treated properly
our derivation of Eq(89) allows us to incorporate easily any in any of the approaches prior to our work. In view of the
more precise model of the bubble interior, and it may benumerical results presented in Sec. V, it is obvious that the
possible to extend this approach in order to account for th@onperturbative treatment of the emitted sound field as pro-
important effects of heat conductivity and mass diffusion. posed here, which accounts for about 50% of the damping of

Our numerical examples obtained in Sec. V employ ashe driven bubble oscillations, is mandatory. In particular,
another approximation the homologous solutions with thehe standard perturbative calculations tend to overestimate
usual adiabatic van der Waals EOS. These EOSs beconge maximally reached surface velocity during the collapse
questionable when the energy density reaches the ionizatigshase considerably. Thus a crucial aspect of the “preparation
regime. The dynamic behavior of the gas mixtures within aphase” for the unknown light-emission process can be de-
rapidly oscillating bubble, here assumed to remain that of &cribed more accurately by employing the nonperturbative
diatomic gas(air), deserves further study. In parallel to the equation of motion derived in Sec. IV {Eq. (89)]. This
cyclic ingassing and outgassing from the liquid into theseems particularly relevant for detailed hydrodynamic stud-
bubble(*“rectified diffusion”), it remains to be seen whether jes of the bubble interior, in which the exterior has been
an essential amount of liquid vaporizes at the bubble surfacgescribed by the perturbative Rayleigh-Plesset equation be-
and recondenses during an oscillation cycle. Related effectgre [4,10,12,15. Our numerical results for the nonperturba-
may help explain the observed sensitivity of sonoluminestive sound pulse emitted by an air bubble in wa®ec. V Q
cence to experimental parameters such as temperature in p@t-qualitatively the first experimental observations reported
ticular[1,18,19. In general, transport phenomena within thein Refs.[1,11]. On the other hand, as we pointed out at the
bubble and across the phase boundary have to be incorpend of Sec. V C, they also indicate the limitation of our
rated whenever the motion becomes fast compared to chagresent derivations. Whereas the bubble equation of motion
acteristic relaxation times;, R~A;/r;, whereA; denotes (89) is derived from the intrinsically nonlinear Navier-Stokes
the scale of a corresponding gradigietg., mass density, equation, in the form of Eq.79) of Sec. IV C, our consider-
partial pressure, and temperatur@ particular, shock waves ations of the emitted sound field are based on the acoustic
may be launched into the bubble interjd;15,16 or exterior ~ approximationsee Sec. Il B Therefore, we still neglect im-
[10], the description of which is beyond the scope of thisportant sound absorption and dispersion effects in the liquid.
work. Using the realistic EOS for wat¢Eq. (63) in Sec. IV A], we

One may speculate whether or not the ligGichtey may  indicated in Eqs(92) the compression of the liquid and the
be trapped in a metastable state with respect to solidificationorresponding increase in the density-dependent sound ve-
into a high-density phaséof ice) and in which form the locity, which are induced by the outgoing pressure spike next
corresponding binding energy would be released most effito the bubble surface. It seems desirable to study in the fu-
ciently. Presumably it stays at or close to the ambient temture the importance of nonlinear effects on the propagation
peraturg[10]. Assuming an effective sound velocity of 2000 and fate of the extremely strong sound pulse emitted.
m/s, the 300-ps mean half-width of the pressure pulse ob- There are published results on full hydrodynamic simula-
tained in Sec. V C corresponds to a spatial shell width of 0.8ions of the coupled bubble-liquid system, which include es-



57 SOUND OF SONOLUMINESCENCE 4185

pecially the exterior fluid 16]. However, to the best of our ACKNOWLEDGMENTS
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